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ABSTRACT stractions, such as new interfaces, would require changes to exist-

Software often goes through a variety of extensions during its life- ing classes. Conversely, if the compiler were written in a functional
time: adding new fields or new variants to a data structure, retroac- style, adding new fields and adding new variants would be difficult,
tively creating new type abstractions, and adding new operations while adding new traversals would be straightforward.

on a data structure. As characterized by the extensibility problem,

it should be possible to apply any combination of these types of ex- Ideally, all of these extensions should be possible in any order with-
tensions in any order. Mainstream object-oriented languages, how-out requiring existing code to be modified.

ever, do not well support the latter two. This paper proposes two

language mechanisms that facilitate extending existing type hierar- Single dispatchs used in traditional object-oriented languages to
chies: multimethod dispatch and retroactive abstraction. For theseselect and invoke a method based on the run-time class of the sin-
two mechanisms to coexist, it is necessary to allow method dispatchgle, distinguished receiver argument of the method invocation. This
on parameters of interface types, which presents problems with mechanism allows adding new classes to an existing hierarchy or
static type-checking. We present a type-safe solution that com- overriding methods in subclasses. Single dispatch also facilitates
bines the two mechanisms by limiting multimethod type checks to encapsulation of data within a class.

package boundaries and by compiling certain packages with multi-

methods into sealed Jar files. By contrast,multiple dispatchis a mechanism for dispatching a
method at run time based on the classes of any subset of the ar-
1. INTRODUCTION guments. While single dispatch is the appropriate mechanism for

As software evolves, data structures might have to be extended!® Obiect-oriented programming style of defining data types as ex-
along several dimensions. The nature of these extensions often cantensions of existing classes, mult_|methods prowd_e better support
not be foreseen at the design stage. Without appropriate support of O @n abstract data type or functional programming style. Also,
the programming language and in the design of the software, sim- multlmet_hods provide a semantically simpler alternative to static
ple extensions might require large amounts of existing code to be overloading.

modified.
Multimethods facilitate the development of object-oriented soft-

Suppose we are writing a compiler for a language the size of Java,Wvare in various ways. Notably, they allow clients of existing classes

where the data structure for representing the parse trees consists of° 2dd new operations that dynamically dispatch on arguments of

100 variants. If the compiler is written in an object-oriented style, (heSe classes. Multimethods thus support a notioopein ob-

we would represent this data structure as a class hierarchy with 100€€ts[29] of adding new operations to existing data structures. Mul-

classes. If later changes require adding additional information to time;hgds also support safe covariant overriding [8] and binary
certain parse tree nodes or adding new variants, the object-oriented€thods [7]-
style would make this straightforward by adding fields and meth-

ods to individual classes or by adding new classes to the hierar- PO €x@mple, suppose we need to add a new tree traversal operation,

chy. If later changes require adding a new traversal of the parse SUCh as a type checker, to our parse tree data structure. Instead of
tree, with the direct object-oriented style we would need to add one the traditional object-oriented style of adding one method to each

method to each one of the 100 classes. Similarly, adding new ab-one of the 100 classes, which risks breaking existing code and dis-
' ’ tributes the control flow of the type checker over many source files,

*Java is a registered trademark of Sun Microsystems, Inc. multimethods allow adding a single type checker class that distin-
guishes up to 100 individual cases (one per class in the hierarchy).
Without support for multimethods, the Visitor pattern [19] could be
used for achieving a similar program structure. The Visitor pattern,
however, requires the programmer to write the dispatch mechanism
by hand and does not support adding new classes to the hierarchy
or adding traversal methods with additional or different parameters.

Most object-oriented languages provide some forisubttype poly-

morphism allowing an instance of a type to be used wherever an
Submitted to OOPSLA '02.



instance of a supertype of that type is expected. Usually, a sub-with operations on those variants. A client of such a component
type relationship is defindoly name The subtype explicitly names  may want to use the component in three different ways:

its supertype(s) in the type declaration. By contrast, \sittc-

tural subtyping any type (class or interface) that implements each
method of an interface is a subtype of the interface, and any ex-
pression of a structural subtype can be used wherever a value of
the structural supertype is expected. Structural subtyping makes e The client may want tadd a variantto the data type; this
the type system more flexible in situations that requéteoactive usually requires adding a case for the new variant to each
abstractionover existing types [25]. existing operation.

e The client may want to use the component in its original
form.

e The client may want tadd an operatiorto the component;
this usually requires including in the new operation a case for
each existing variant.

For example, suppose we are given a precompiled library class
RandombDataAccess . We want to abstract over this class with
the restricted interfacReadOnlyRandomAccess that does not
include thewrite()  method and then add cla@DRomDrive

as an alternative implementation. With named subtyping, we either TO facilitate software maintenance and to accommodate compo-
need to m0d|fy the existing C|ass by dec|aring th'an'p'ements nents aVaiIable Only in Compi|ed fOI’m, SUCh uses must be pOSSib|e
the new interface or write glue code in the form of the Adapter Without modifying or recompiling

pattern [19]. Structural subtyping allows abstracting over existing

code by simply adding an appropriate interface declaration. e the original program component (data type and operations),

Similarly, structural subtyping can be used for retroactive abstrac- ~ ® €Xisting client code, or

tion over a subset of the classes of an existing hierarchy such thata o existing components added as new variants to the original
new traversal can be added to work on only that subset of classes. datatype.

The new traversal would then be implemented using multimeth-
ods. Since the retroactive abstractions are interfaces, this require
the multimethod dispatch to be performed on a parameter of an in-
terface type, which causes problems with static type-checking. A
similar need for multimethods that can dispatch on interface types
arises when adding support for closures and function types to the
language [2].

Sl'he last constraint-retroactive abstractiorio allow existing, pos-
sibly compiled, components to become variants of a data type—
appears to be a novel aspect of the discussion of the extensibility
problem.

In object-oriented programming, it is common to model a data type
d with variants through subtyping. A root type specifies the com-
mon operations available on the datatype, and its subtypes repre-
sent the variants. We use the following example, based on work
by Krishnamurthi, Felleisen, and Friedman [24], to compare dif-
ferent object-oriented attempts at solving the extensibility prob-
lem. Specifically, the example involves a data type with root type
SimpleShape and two original variantsCircle andTrans -
(lation), as well as some original operations on shapes. Another
variant as well as other operations will be added later. The com-
mon declarations for the data type are given here:

This paper explores the implications of combining encapsulate
multimethods and retroactive abstraction. Millstein and Cham-
bers [29] have described a spectrum of restrictions for multimeth-
ods with trade-offs between expressibility and modularity. By
adding encapsulated multimethods and retroactive abstraction to
Java, we achieve modularity using classes for encapsulation. We
allow interfaces as argument types of multimethods at the expense
of additional compile-time type checks through regional program
analysis. Instead of full structural subtyping, we provide a retroac-
tive abstraction declaration for abstracting over existing classes or
interfaces. Parasitic methods [6] also allow interfaces as argument
types but have a potential ambiguity problem. MultiJava [13, 14], import java.awt.Point;

on the other hand, does not allow interfaces as multimethod argu-IMpPort java.awt.Rectangle;

ment types. Our extension of Java with multimethods and struc- import java.awt.Shape;

tural subtyping is a step in the development of Brew, a successorinterface SimpleShape {

language for Java with a new object model [3]. We are currently  java.awt.Rectangle getBounds();
implementing Half & Half, our extension of Java with multimeth- /I other original shape methods
ods and retroactive abstraction, as a front end of the Brew compiler. }

class Circle implements SimpleShape {

Writing extensible software requires different ways of extending public Circle(Point p, double r) {...}

existing type hierarchies: adding variants to a data structure, retroac- public Rectangle getBounds() {...}

tively creating new type abstractions, and adding new operations on !/ other original shape method

a data structure. Such extensions are not well supported in existing /f implementations for Circle

object-oriented languages; thetensibility probleni31, 15, 24, 36,

18] characterizes the current difficulties in addressing these needs.class Trans implements SimpleShape {
Point p;

2.1 The Extensibility Problem SL”QEESTTS‘ES(P%M Shape ) (.}
The extensibility problem considers typical paths along which soft- Bublic Rectangle ggt’Bounc?s() {}

ware systems evolve and, following Findler and Flatt's descrip-  // original shape method
tion [18], can be summarized as follows. A software component // implementations for Trans
might consist of a data type in the form of different variants, along }



2.2 Extensibility with Encapsulated Multimeth-

ods and Retroactive Abstraction
Based on the aforementioned example, we will now illustrate the
combination of retroactive abstraction and encapsulated multimeth-
ods.

The interfacgava.awt.Shape  from the Java Abstract Window
Toolkit [35] is an existing component that we wish to add as a vari-
ant; we use retroactive abstraction to decjaxa.awt.Shape

as a subtype dsimpleShape .

interface java.awt.Shape extends SimpleShape;

To add a new operation to the component, we provide the class
Containment , which defines the multimethambntains . This
multimethod consists of generic methodhat provides the static

type signature of the multimethod, as well as a case for each exist-

ing variant of the data type.

class Containment {
public generic boolean
contains(SimpleShape s, Point 0);

public boolean

contains(SimpleShape s, Point o) {...}
public boolean

contains(Shape s, Point o) {...}
public boolean

contains(Rectangle r, Point o) {...}
public boolean

contains(Circle ¢, Point o) {...}
public boolean contains(Trans t, Point 0) {

return contains(t.s,

new Point(o.x - t.p.x, 0.y - t.p.y));

To add a new variant to the data type, we define the ¢lemssn .
For using the operatiocontains  on the new variant, we provide
the clasdJnionContainment , an extension o€ontainment
that adds a case to the multimethomhtains  to handle the new
variant.

class Union implements SimpleShape {
SimpleShape s, t;
public
Union(SimpleShape s, SimpleShape t) {...}
public Rectangle getBounds() {...}

class UnionContainment extends Containment {
public boolean contains(Union u, Point o) {
return contains(u.s, 0)
|| contains(u.t, o);

The following example of client code illustrates the application of

new Trans(new Point(3, 4),
new Union(new Circle(3),
new Circle(5))),
new Point(2, 3))

2.3 Existing Approaches to Extensibility
We will now take a look at existing object-oriented approaches to
solving the extensibility problem.

It is easy to add new variants to the original example in the form of
new subtypes, such amion .

class Union implements SimpleShape {
SimpleShape s, t;
public
Union(SimpleShape s, SimpleShape t) {...}
/I shape method implementations for Union

}

It is difficult, however, to add new operations to the data type, since
this requires adding a method to the root type as well as each ex-
isting subtype. Furthermore, doing so requires modifying existing
client code to use the extended variants instead of the original ones.

interface SimpleShape {
Rectangle getBounds();

/I original variants...

interface ShapeWithContainment
extends SimpleShape {
boolean contains(Point 0);

class CircleWithContainment extends Circle
implements ShapeWithContainment {
public boolean contains(Point o) {...}

/I extensions of the other variants...

The Visitor pattern [19] provides a partial solution to this problem.
Here the root type specifies only a single dispatch operation that
takes a visitor (an object representing an operation on the data type)
as an argument. Based on the assumption that the data structure
is stable, the visitor interface requires a method for each existing
variant of the data type. The Visitor pattern makes it easy to add
new operations in the form of a single class.

interface SimpleShape {
Object accept(ShapeVisitor v);

interface ShapeVisitor {
Object visitCircle(Circle c);
Object visitTrans(Trans t);

interface UnionVisitor extends ShapeVisitor {

the multimethod to a shape and a point. As operations are added in" Opject visitUnion(Union u);

the form of multimethods, clients can continue to use the original
variants to construct instances of the data type.

new UnionContainment().contains(

}

class Circle implements SimpleShape {

puBfic Object accept(ShapeVisitor v) {



}

return v.visitCircle(this);

}

/I implementations of the other variants...

class Containment implements ShapeVisitor {

Point o;

public Containment(Point o) { this.o =
public Object visitCircle(Circle c) {...}

public Object visitTrans(Trans t) {...}

o; }

However, adding new variants is now hard, since it requires extend-
ing the visitor interface. Doing so requires modifying each existing
visitor class to include a method for the new variant.

class Union implements SimpleShape {

}

SimpleShape s, t;
public
Union(SimpleShape s, SimpleShape t) {...}
public Object accept(ShapeVisitor v) {
return ((UnionVisitor) v)
.visitUnion(this);
}

class UnionContainment extends Containment

implements UnionVisitor {
public UnionContainment(Point o) {
super(0);

public Object visitUnion(Union u) {...}

We observe an interesting duality between the two approaches. In
both cases, it is necessary to plan ahead to support the particular
programming protocol so that later modifications of existing code
can be avoided.

e If ordinary subtyping is used to add operations to the data
type, then client code should be parameterized ahead of time
by an Abstract Factory [19]. In the absence of a decent mod-
ule language [18], this parameterization plays the role of a
simple dynamic linker and avoids hard-coding the client to a
specific data type implementation.

interface ShapeFactory {
SimpleShape createCircle(double r);
SimpleShape
createTrans(Point p, SimpleShape s);
..

}

class SimpleShapeFactory
implements ShapeFactory {
public SimpleShape
createCircle(double r) {
return new Circle(r);

}
..
}

class ShapeFactoryWithContainment
implements ShapeFactory {

new CircleWithContainment(r);

}
..

}

/I client with ShapeFactory parameter

factory.createTrans(new Point(3, 4),
factory.createUnion(
factory.createCircle(3),
factory.createCircle(5))))

e If operations are implemented as visitors, then any visitors
that create new visitor instances should implement and use
Factory Methods [19] for this purpose [24], which are a spe-
cial case of Abstract Factory where the factory’s client also
acts as the factory itself. The Visitor pattern limits the ar-
guments of each visitor method to a single data type vari-
ant. The resulting stateful visitors may need to create ad-
ditional visitor instances with modified state to model the
partial application of the same function to a modified ar-
gument. Without this technique, @nion shape within a
Trans shape would lead to a run-time exception at the cast
down toUnionVisitor in the methodJnion.accept

class Containment {
...
public Containment
createContainment(Point 0) {
return new Containment(o);

}
public Object visitTrans(Trans t) {...}
return t.s.accept(

createContainment(
new Point(o.x - t.p.x,
oy - tp.y));

}
}

class UnionContainment
extends Containment {
...
public Containment
createContainment(Point 0) {
return new UnionContainment(o);

}
public Object visitUnion(Union u) {
return new Boolean(
((Boolean) u.s.accept(this))
.booleanValue()
|| ((Boolean) u.t.accept(this))
.booleanValue());

Since the Visitor pattern requires visitor support in each variant of
the data type, it does not directly accommodate retroactive abstrac-
tion involving existing components. By contrast, using ordinary
subtyping allows a limited form of retroactive abstraction by adding
a variant that is a subtype of the existing component and a subtype
of the data type’s root type.

Recently, Zenger and Odersky [37, 38] presented a new program-
ming protocol for extensible visitors. This protocol is based on the
Visitor pattern, making it easy to add operations, but overcomes

public SimpleShape
createCircle(double r) {
return

1This is no problem in Java as long as the root type of a data type
is an interface.



the limitations of the Visitor pattern by adding default cases to op- We also provide a class for accessing information on CD-ROM
erations; a default case handles future extension of the data typedrives. Since CD-ROM drives are read-only devices, the corre-
on which an operation is used. Since the protocol is complex, lan- sponding class implements only interfgaea.io.Datalnput

guage support for extensible data types would be desirable. and provides additional methods for random access:

3. LANGUAGE DESIGN class CDRomDrive implements Datalnput {
We argue that the combination of multimethods and retroactive ab-  long length() throws IOException {...}
straction has the advantages of the existing approaches while avoid- public void seek(long pos)

ing some of their drawbacks. Specifically, our approach has the throws IOException {...}

. G /I implementation of methods
following favorable characteristics: /I from interface Datalnput

}
e No support for the Visitor protocol is needed in the data type.

Besides the methods for reading data, the application needs to use
the random-access methsdek . We therefore would need an in-
terface of the form

e No parameterization of the client code with an Abstract Fac-
tory or other form of dynamic linking protocol is needed.

e Operations on the data type can be added in the form of new
multimethods as easily and elegantly as in the Visitor pattern. jnterface ReadOnlyRandomAccess
extends Datalnput {
e Variants of the data type can be added easily. long length() throws IOException;
void seek(long pos) throws IOException;

e Existing types can be added as variants of the data type using}
retroactive abstraction.

e Ordinary methods and multimethods can coexist in the data- Unfortunately, the Java library does not provide such an interface;
type. The methoddength andseek are not provided in either of the

interfacedDatalnput  andDataOutput
e Multimethods can be type-checked statically.
Since clasRandomAccessFile is part of the library and cannot
e More specific return types for operations can be defined. In be modified, we would have to write an Adapter class [19] that im-
contrast, the Visitor pattern supports only a single return type, plements the interfacReadOnlyRandomAccess by name and
typically Object . forwards requests to claBandomAccessFile

e Additional arguments for operations can be defined. In con- Instead of requiring users to write and use such an Adapter class,
trast, the Visitor pattern requires such information to be part we provide a new language construct that retroactively establishes
of the state of the visitor, requiring Factory Methods to sup- a subtype relationship between an existing class and an interface.
port the extension of the visitor state.

class RandomAccessFile
In the remainder of this section, we present each of the two pro-  implements ReadOnlyRandomAccess;
posed language mechanisms, retroactive abstraction and multimeth-

ods, from a language design perspective. . i ) )
Such a retroactive abstraction declaration can appear in any context

) ) in which regular class declarations are allowed and where both the
3.1 Retroactive Abstraction existing class and the interface are visible.
Consider an application that performs read-only random access on
databases located either on disk or on a CD-ROM drive [25]. We As long as clasRandomAccessFile  structurally conforms to

access disk files using the claaga.io.RandomAccessFile ; interfaceReadOnlyRandomAccess , we allow the introduction
but using only the methods for reading from the file, not the ones of such retroactive subtype relationships. The type check performed
for writing to the file. for a retroactive abstraction is the same as if ith@lements

clause were added to the original class definition.

class RandomAccessFile

implements DataOutput, Datalnput { It is the programmer’s responsibility to make sure that an interface

public void close() that retroactively abstracts over an existing class has a specification
throws IOException {...} that is met by the implementation provided by that class, just as itis
public FileDescriptor getFD() the programmer’s responsibility in standard Java (and many other
throws IOException {...} object-oriented languages) to ensure that a class that implements an
public long_getFilePointer() existing interface obeys the specification of that interface.

throws IOException {...}

long length() throws IOException {...} . . . T
void seek(long pos) Similarly, for retroactively abstracting over an existing interfdce

throws |OException {...} with a new interfacé , we provide the construct
/I implementations of methods from the
/I interfaces DataOutput and Datalnput
} interface J extends |I;



Both of these retroactive abstraction relationships could be inferred of the arguments, a multimethod component of a generic function

from the code instead of declared [25, 5, 4, 1]. E.g., given an as- is selected at run time based on the dynamic types of the arguments.

signment of the form

We make the signature of the generic function explicit by requir-

ing the programmer to declare the generic function by providing a

method signature modified by the keywagdneric . In the fol-

lowing example, the generic functiqrint is implemented by

two multimethods:

the compiler could verify that the right-hand-side class implements

all the methods of the left-hand-side interface, i.e., that the class pyplic generic void print(C x);

is a structural subtype of the interface. However, this has the dis- public void print(C x) { ... }

advantage that accidental retroactive abstractions where the claspublic void print(D x) { ... }

does not satisfy the intended semantics of the interface are difficult

tc_) Frack_ down. A retroactivémplements declaration is more where typeD must a subtype of typ€. The typesC andD can be

visible in the code and can be regarded as an abbreviation for an. -

Adapter class. |nterfage types as well as class types.. We do not alloyv dlspatch
on basic types since Java does not define subtype relationships for

them.

ReadOnlyRandomAccess f
= new RandomAccessFile();

3.2 Multimethods

Multimethod languages without single dispatch, such as Common For dispatching on null pointers, we also provide the syntax
Lisp [30, 33], Dylan [32, 17], or Cecil [10, 12, 9], provide symmet-
ric multimethods, where the dynamic dispatch is performed on all
arguments symmetrically. MultiJava [13, 14] adopted this style of
multimethods as well.

public void print(null) { ... }

using the pattermull instead of a parameter declaration. If no
For an extension of a single dispatch language such as Java, we armultimethod is defined for dispatching on null, the multimethod
gue that purely symmetric multimethods are undesirable since theyfor the most general parameter type is selected. It is an error if
do not fit into the language as well as encapsulated multimethods.there is no unique method with a most general parameter type.
Java allows the receiver of a method to access the private fields of
the surrounding class. With symmetric multimethods, a method In order to avoid any confusion between multimethods (dynamic
would either have privileged access to the classes of all parametersoverloading) and static overloading we do not allow multimethods
or to none. While the former would violate Java’s encapsulation, to be mixed with static overloading. In the above example, the
the latter is often too restrictive. If only one parameter is treated declaration of the generic function forces all other methods with the
differently for encapsulation purposes, then this should be the re- same name to be treated as multimethods of that generic function.
ceiver as for other methods in Java. It is a compile-time error if the class where the generic function
is first declared inherits any methods with the same name as the
Java already has overloaded methods, where out of a set of methodgeneric function.
with the same name the appropriate method signature is selected
at compile time based on the static types of the arguments. Mul- The ban on mixing dynamic and static overloading is not strictly
timethods are similar to overloaded methods, except that methodnecessary. It is conceivable to have a generic function and an-
selection happens at run time. Removing overloading from the lan- other method with the same name that is not a multimethod of the
guage is not an option since it would break existing code. For the generic function (e.g., we could label multimethods with a special
two mechanisms to coexist, we argue that it is desirable that multi- keyword to distinguish them from methods that statically overload
methods can be used exactly the same way and in the same contextthe generic function). However, this would complicate method se-
as overloaded methods with the only exception being that method lection tremendously and has few, if any, practical uses. The only
selection happens at run time. reason for allowing this would be to work around Java'’s distinction
between simple typesnt , double , etc.) and reference types.
By defining multimethods, like overloaded methods, as methods It might make sense to allow static overloading of a generic func-
inside a class and by using the same semantics for the receiver artion with methods that have one or more parameters belonging to a
gument, multimethods become encapsulated. Encapsulated multi-simple type.
methods are useful for defining binary methods [8, 7, 6] but they
also provide additional flexibility for writing visitors. Suppose we The generic function declaration may be modified by access modi-
want to add twalraw operations to ouBimpleShape hierarchy fiers, and may be declarstatic  and/orfinal  (and in addition
for drawing shapes in different styles. By writing these operations synchronized  and/orstrictfp , but these merit no further
as encapsulated multimethods and by using an abstract factory, weadiscussion). It may, however, not be declaadx$tract . If the
can parameterize a client dfaw to use either of the twdraw generic function is final, this means that the set of its multimethods
implementation. If this additional parameterization is not required, may not be extended in a subclass, although individual multimeth-
a visitor can also be defined as a set of symmetric multimethods by ods may still be overridden. If the generic function is static, this

declaring them static. means that no dynamic dispatch based on the receiver argument
takes place, only symmetric dispatch based on all argument types,
Like a set of overloaded methods in Java, we defigergeric func- i.e., we are dealing with ordinary symmetric multimethods.

tion as a set of methods (itmultimethodcomponents) with the
same name but with different signatures. Unlike an overloaded Multimethods must be declared to have the same protection as the
method, which is selected at compile time based on the static typegeneric function they are part of. They can be further modified by



abstract orfinal (and/orsynchronized  andstrictfp ). completeness and uniqueness type checks. To allow these type
If one or more multimethods are abstract, the surrounding class checks to be performed across class boundaries, the subtype re-
must be abstract. If a multimethod is final, this means, as usual, lation must be recorded in a class file. The byte code format [28]
that it cannot be overridden in a subclass. Like regular methods, allows user-defined attributes to be included in a class file; standard
non-final multimethods can be overridden in a subclass. If a mul- virtual machines would simply ignore these attributes. We use this
timethod callssuper the overridden multimethod from the super mechanism to record the subtype relation defined by a retroactive
class is executed. abstraction declaration in the byte code file for the class containing
the declaration or, if the declaration is outside class scope, in the
If a multimethod declares that it throws an exception, the generic byte code file for the public class of the source file.
function must declare a supertype of that exception. Likewise, the
result type and each parameter type of the generic function must be 2 Multimethods

a supertype of the respective result type or parameter type of each . ) . . . .
multimethod. Generic functions and their multimethods require no special type-

check on the client-side, i.e., where a generic function is invoked.
The method invocation type-check, including the above modifica-
tions, is carried out on the basis of the declared signature of the
generic function.

To resolve a multimethod call of the forrprint(y) , we first
look for a declaration of a generic functigmint  in the static
type ofx, where the type of must be a subtype of the parameter
type ofprint . Then at run-time, the generic function selects the ) ) .
appropriate multimethod. If the multimethod was overridden in a 1€ generic function does, however, require an elaborate type check
subclass, Java's single dispatch mechanism then selects the apprd?? the implementation side, i.e., when it is declared or extended
priate method from the dynamic type of the receiver. These steps"‘”th new multimethods. A generic function is declared exactly

in selecting a method are the same as for overloading, except thaONce, and we refer to its declaration site ashbhse class othe
in case of overloading the second step happens at run time. generic function. This means that when a declaration modified by

the keywordgeneric is encountered, we must first check that it
does not override a generic function from a supertype (hiding, how-
4. TYPE-CHECKING ever, is allowed for static generic functions). For each method not
4.1 Retroactive Abstraction modified bygeneric , check if there exists a generic function with
Retroactive abstraction requires only a few changes to Java’s type-the same name and a conforming type, which can be declared in the
checking algorithm, affecting mainly assignments of values to (the Same class or inherited from a superclass; if there is, the method is
equivalent of) L-expressions [25]. These occur in a small num- & multimethod of that generic function.
ber of places, namely explicit casts, assignment statements, pass-
ing values to the parameters of a method on method invocation, andNext, the set of all multimethods of a generic function is deter-

assigning method results usingedurn  statements (alsthrow mined. It consists of all multimethods (with the same name and a
statements, but since the type of the thrown expression must be aconforming type) declared in the current class and any multimeth-
class type, we can ignore this case here). ods (with the same name and a conforming type) available in the

superclass, except those that are overridden by a multimethod in the
Type-checking proceeds by examining the declared type of the ex-current class. Overriding of multimethods is the same as method
pression being assigned to and of the assigned expression. We firseverriding in standard Java.
check whether the expression being assigned to is a supertype of the
type of the assigned value, in which case the assignment statemenPispatch based on the non-receiver arguments is symmetric and
is well-typed. Otherwise we carry out any other standard Java type- requires the usual checks for symmetric multimethods, namely:
checks for assignment. The supertype relation is the reflexive tran-
sitive closure of the union of thextends and themplements

relations, possibly declared retroactively. completeness:for any argument tuple there must exist at least one

applicable multimethod; and
Checking retroactive abstraction declarations of the form . .
uniqueness: for any argument tuple there must exist at most one
most specific applicable multimethod.
class C implements I;

) ) ) ] Since we allow interface types as argument types of multimeth-
is straightforward: exactly the same type-check is carried out as for ogs, the usual ways of carrying out these checks [29, 14] are not

an ordinaryimplements  clause of a class declaration. directly applicable. For example, consider the following declara-
o ) ) tions, wherd is an interface, and andK are sub-interfaces df

Similarly, the type check required for checking but neither is a sub-interface of the other:

interface | extends J; generic void print(l);

void print(null) { ... }
. . ) void printd x) { ... }
is exactly the same as for type-checking an ordinaxiends void print(K x) { ... }
clause of an interface declaration.

As explained below, the subtype relation defined by a retroactive If there is a class that implements batandK, uniqueness is vi-
abstraction declaration is needed for performing the multimethod olated. Type-checking needs to ensure that such a class does not



exist. However, the information needed to check this is not neces- fit into the standard Java compilation model. Instead, we propose
sarily available at compile-time in the case of separate compilation the use ofpackage sealingwhich is already part of Java. A pack-
when the full type hierarchy is not known. age can be marked as sealed in a Jar file, which means that all of its

classes must be loaded from the same Jar file. If the compiler writes
To remedy this situation, we propose using a regional link-time its bytecode output into Jar archives it can attain a certain amount
check at the level of a Java package. More precisely, we imposeof control over the class inventory of a package. In particular, if
the following restriction: there are restrictions on what interfaces a class may implement be-
cause those interfaces are used for dispatching multimethods, this
restriction can be recorded inside the Jar file for the package and
the compiler can then ensure that all classes comply with any such
restrictions and, if necessary, seal the package. This compilation
scheme requires no changes to a JVM with class loaders that re-
spect the integrity of sealed packages.

For any two multimethods of the same generic func-
tion, if one has a formal parameter of an interface type,
the other has in the same position a formal parameter
of an interface type, and the two interface types are
incomparable (neither is a subtype of the other), then
at most one of the interfaces can be publicly visible
or can be (retroactively) extended by a publicly visible
interface.

Notice also that this introduces a kind olosed world assump-
tion, since package-local classes and interfaces can no longer be
extended, but all their subtypes are known when the package is
sealed. In other words, package-local types now behave like dis-
In the previous example, if interfackis public butK is not and joint sum types in functional languages (e.g., in the ML family).
does not have a public subinterface &must be declared in the )

same package as the class containing the generic function), thereThe only way whereby a clags that Imp_le_ments bt_;&ndK (_:ould

can be no classutsidethe package of the generic function that Still be present at run-time is via explicit dynamic loading [27].
implements botl andK, sinceK and any subinterfaces &f are The compiler can generate a spemal class loader that carries out
not visible outside its package. any necessary checks when a class is loaded at run time and throws
a linkage error in case a problem is detected.

However, we still need to make sure that there is no dtagdethe ) o )
package of the generic function that implements oéimdK. This With the abovg restriction {ind the package-level check in place,
is problematic in standard Java, since packages are by default operihe rest of the implementation-side checks proceed as usual [12]:
in the sense that one may retroactively add classes to an existingconstruct a partially ordered set of tuples of the faim ..., ¢.)
package. For example, it is possible to create a file containing the Where each; is a (retroactive) subtype of the type of this param-
following Java code: eter of the generic function and a (retroactive) supertype of the type
of theith parameter of some multimethod; then check that the com-

pleteness and uniqueness properties are satisfied for all elements of
package java.lang; this set.
public class Foo {}

For enforcing multimethod completeness we use the same restric-
If this file is compiled and the resulting bytecode file is placed in tion asin MultiJava[13, 14, 29], but for package boundaries instead

the classpath of the Java virtual machine, one can then write code®f file boundaries:
such as this:

If a generic method has an abstract class or an inter-
class Bar { Foo f; } face as a parameter type and a dispatch is performed
on this parameter, then there must be a multimethod
implementation with the same parameter type, unless

An explicitimport  declaration is not needed, since the package the abstract class or interface is only package visible
javalang is imported by default, hence the narfieo is vis- and does not have a public subclass or subinterface for
ible. This is what we mean when we say that jaea.lang which no multimethod is defined.

package is open.

In ordinary Java, this lack of modularity is not a major problem. E.g., the generic functioprint above does not have a multi-
However, in the presence of multiple dispatch we are faced with a method of typeprint(l) . If I is public, an error is reported
problem of missing encapsulation: in the example above we noted saying that the multimethod is potentially incomplete becduse
that a class that implements badtandK would result in a violation could be implemented by a class outside the packagd. Has
of the uniqueness property that allows unambiguous resolution of only package visibility and there is no class within the package that
a multimethod invocation; but if a package is open nothing could only implementd but neitherd nor K, then the generic function
stop a developer from adding such a class after the generic functiontype-checks. In the latter case, the package must also be sealed
in this example has been successfully compiled, potentially giving in a Jar file to prevent a public subtype lofoeing added without
rise to a uniqueness violation that cannot be detected at compilere-checking the multimethod.
time.

For constructing this partially ordered set of tuples, as well as for
In a traditional compilation model in which linking is controlled  checking the restriction on public interfaces, the compiler must col-
by the developer, an appropriate type-check could be carried out atlect all retroactive abstraction relations from the package. These
link-time when the entire class hierarchy is known (but see below were recorded in the byte code files when the corresponding decla-
on dynamic loading of classes). However, this approach does notrations were type-checked.



5. COMPILATION This translation will be revised in the subsequent discussion and
Compilation is best conceptualized as a source code transformationserves mostly as an illustration of the basic idea. Such a translation
that maps code containing retroactive abstraction declarations oris possible because the adapter object assignedsactually an
multimethods into ordinary Java code. We will implement these instance of interface in ordinary Java.

language mechanisms in the Brew compiler as a transformation of

the parse trees. A few problems remain, which arise from the fact that this compi-
lation scheme uses potentially many different objects to represent a
5.1 Retroactive Abstraction singleC object, namely the object itself plus any number of adapter

In previous work we have described an extension of Java with struc- OPjects. For example, the following code snippet is problematic:
tural subtyping [25]. The implementation approach of modifying

the type checker in the virtual machine we described in that paper C ¢ = Factory.createC();

also works for retroactive abstraction. Because of the large installed| i = c;

base of Java VMs, it is preferable, though, for the compiler to gen- if (¢ == 1) /I ...

erate standard byte code that can run on any virtual machine.

o . L ) ) In this case, the expressigo==i) should evaluate ttrue no
If modifying the virtual machine is not an option, retroactive ab- matter at what poin€ was declared to implemeit But the as-

straction can be implemented by using adapter objects that take thesignment ta created an adapter object that is different from the

place of objects of classes that have been retroactively abstracted, e ofc, hence the pointer comparison on the last line will fail.
over. The basic idea is illustrated by the following example [25]:

The general remedy is to use adapter objects very cautiously and

interface | { only in contexts where they are absolutely necessary. Note that
byte aMethod(); ) Java’'s== operator on reference types can be thought of as having
void anotherMethod(int x); been declared as

}

class C implements I, boolean ==(Object x, Object y);

Here, C is an existing class type for which source code may not This means that ifc==i) bothc andi are implicitly cast to
be available. The retroactive abstraction declaration gives rise to Object . But in that case the adapter is no longer needed, since its
the following adapter class. The name of the adapter class is notsole purpose was to disgui€mbjects a$ objects; for purposes of
a legal Java identifier, but can nevertheless be represented in Jav@ointer comparison we always want to get rid of any adapters.
bytecode.

We must modify the translation scheme slightly so that the environ-

class Ad@pter_C_I implements | { ment contains the following interface:

final C instance;
Ad@pter_C_I(C i) {

instance = I public interface Ad@pter {

Object getinstance();

) e ety
bublic byte aMethod() { ) Object toObject();

return instance.aMethod();

publict void an?rt]he'(AM?rt]h%d(ir.lt x) { Now we define the following transformer of expressions that dis-
instance.anotherMethod(x); cards any adapters, if present:

}
public int hashCode() {

return instance.hashCode(); unwrap(x) = ((x instanceof Ad@pter)?

} B
/I etc. for other specified methods :((Qt)j@pter)x).toObject()

The above adapter has to be modified slightly to implement the

In other words, an adapter object forwards all methods from the Ad@pter interface:

interface thatC has been declared to implement, including those

from java.lang.Object , to aCinstance it contains. ]
class Ad@pter_C_I| implements Ad@pter, | {

; P final C instance;

Consider a code fragment such as the following: Ad@pter C I(C i) {
instance = i;

class C implements I; }o )
Cc public Object getinstance() {
li=c return instance;

}
public Object toObject() {
Now the last assignment statement can be translated into return unwrap(instance);

/I remainder unchanged
I i = new Ad@pter_C_I(c); }



We can now translate a pointer comparison of reference types such(l) Registry.convert(l.class, c)
as(c==i) into

Unwrapping of adapters is also performed for the implicit upward
unwrap(c) == unwrap(i) casts in assignment conversions. In particular, it is always possible
tounwrap an object when assigning it to an expression of declared

) ) ) ) ~ typeObject . For example, the following code
This translation clearly preserves the intended semantics of pointer

comparison in the presence of retroactive abstraction via adapters., .
P P TS| i = new C(); /I create adapter

L . . . Object o = i; // adapter not needed, toss it
A similar issue arises witinstanceof ~ expressions. If we have ¢ ¢ = (©) o; /I no action required
an objectc of classC that is a subtype of , no matter where Il because (o instanceof C)
that subtype relationship was declared, ti{eninstanceof if (i==c) Il true

I) must evaluate ttrue . The following nonstandard cases arise

when retroactive abstraction is involvetlis an adapter object and

| is a supertype of the object wrapped upcinbut not ofc it-

self. In this caséunwrap(c) instanceof ) evaluates to

true . Orc is not an adapter object but@object, andl was | i = ()Registry.convert(l.class, new C());

retroactively declared as a (not necessarily immediate) supertypegblecf OC: unwrap(i);

of C. In that case we need a separate mechanism for keeping traclﬁ ¢ = (C) 2’:
. > ; f (unwrap(i)==c)

of retroactively introduced subtype relations.

is translated into

We need a global data structure that keeps track of the nonstandard-lassRegistry  can be implemented as a static table that records
subtype relations. The following design is meant to be compatible the adapter classes for each registered occurrence of retroactive ab-

with on-demand class loading: straction. For implementingonforms(c,i) , we search whether
thereis a chain of types, . . . , t,, wherec = to,i = t,, andt; is
) a (retroactive) subtype @f,. For testing whethet; is a retroac-
class Registry { . tive subtype oft;;; it is not necessary to perform the full type
/I'Register ¢ as a subtype of i check; since only retroactive subt relationshi I d that
/I and use a as the mediating adapter. ' y . Plype relationsnips are aflowed tha
public static void were checked at compile time, it is sufficient to look up the table.
register(Class ¢, Class i, Class a) {...} Results of this search can be memoized to speed up future searches.
Similarly, for implementingconvert(i,c) , we find the chain
//ugl?c?ts\tﬂé?i?:thk%oﬁa alrs1 an instance of i. of subtypes as above and insert the adapters found in the table for
p conforms(Obiject ¢, Class i) {..} retroactive subtype relationship.
/I Return a representation of ¢ that is The disadvantage of this translation scheme using adapters and the
/I an instance of i; throw an exception registry is that it does not work for native methods. The author of
/I if the conversion does not succeed. native methods must manually write the same code for unwrapping
/I Conversion is guaranteed to succeed adapters and for using the registry as what is inserted by the com-

/I if conforms(c,i) is true. : : . . o X i
public static Object piler. It is not possible, however, to modify existing native meth

convert(Class i, Object c) oqls, such as th_os_e used_for implemenfaga.lang.Thread
throws RuntimeException {...} Since most existing native methods, however, do not operate on
} user objects and have no need to compare them for equality or
to perform retroactive subtype tests, we believe that this will not
be a problem in practice. Similarly, there are potential problems

Here theconforms() ~ method is analogous to amstanceof when passing an object wrapped with an adapter to an existing li-

test, and theonvert() ~ method mirrors a cast expression, aswe prary method. While an implementation that modifies the virtual

shall see shortly. machine is semantically cleaner and works for native methods, we
believe that using adapters is more desirable in practice than modi-

Now we can translate an expression lifee instanceof 1) fying the virtual machine.

into

5.2 Multimethods

Registry.conforms(c, l.class) Code generation for generic functions and their multimethods is
illustrated by this example:

The registry also handles all type conversions of class or inter-

face types, including explicit casts, but also implicit upwards casts class A {

generic int foo(l);

in assignment statements, parameter instantiatiensn state- int foo(l xX) { /1 %}
ments, etc. Explicit casts, such as int food x) { /2 *}
int foo(null) { /* 3 * }
}
M c
This is transformed into ordinary Java code, with the exception of
are translated as the method names, which are not legal Java identifiers, but can nev-
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ertheless be represented in Java bytecode with the names showiThen the translation for retroactive abstraction would turn this into:

here.
class A {
int foo(l x) {
if (x == null)

return <multi>_foo_<null>();
else if (x instanceof J)

return <multi>_foo((J) x);
else

return <multi>_foo(x);

}
int <multi>_foo(l x) { /* 1 * }
int <multi>_foo(d x) { /* 2 */ }

For code generation, multimethods are simply renamed by prefix-

ing their name withkmulti>_ | effectively making them inacces-
sible to ordinary class members. The renamed methods are give

private  access if the generic function hasivate  access;
protected access if the generic function is eitheublic  or
protected ; or default (package) access if the generic function

int foo (I x) {
if (x instanceof Ad@pter_C_|
&& ((Ad@pter_C_I) x).instance
instanceof D)
return <multi>_foo(
(D) ((Ad@pter_C_l) x).instance);
else if (x instanceof Ad@pter_C_I
&& ((Ad@pter_C_I) x).instance
instanceof C)
return <multi>_foo(
(C) ((Ad@pter_C_l) x).instance);
else
return <multi>_foo((l) x);

However, the above code contains redundant checks and casts. Since
retroactive abstraction must be declared explicitly, the new subtype

Telations it introduces are known at compile time. This informa-

tion can be used to generate more efficient code like the following

version of the dispatch method:

has default access, so that they can be overridden in a subclass.

Recall that we said above that multimethod overriding behaves the
same as ordinary method overriding in Java; here we see that it

actually is the exact same thing.

The generic function declaration is transformed into a method with

the same name and signature that carries out the symmetric dis-
patch based on the run-time argument types. There are many ways

to perform this form of dispatch [14], but for purposes of expo-
sition we show a simple way to do this usiifg statements and
instanceof  tests. In general, though, it is possible to generate
more efficient code than a cascading sequendesténceof

tests [11] when dispatching on multiple arguments.

The dispatch method corresponding to the generic function mus

int foo(l x) {
if (x instanceof Ad@pter_C_I) {
C ¢ = ((Ad@pter_C_I) x).instance;
if (c instanceof D)
return <multi>_foo((D) c);
else
return <multi>_foo(c);
} else
return <multi>_foo(x);

}
5.3 Binary compatibility

Since multimethods are renamed and made inaccessible, changes
to the multimethods, including removal of a multimethod, do not

t affect binary compatibility, in the following sense: client code that

be generated in the generic function’s base class and overridden inc@llS the generic function will link without error after the multi-

any subclass that adds new multimethods.

Due to the presence of retroactive abstraction and the adapter class

methods were changed (provided the package containing the generic
function was re-checked). We consider this to be an improvement

Quer static overloading, since removing one method among a set of

described above the generated dispatch code might include somdnéthods that share an overloaded name does not preserve binary

redundancies. Consider the following code snippet, wikeiea
subclass o€andl has been retroactively declared to abstract over
classC:

class B {
generic int foo(l);
int foo(I x) { * 1 * }
int foo(C x) { /* 2 *}
int fooD x) { /* 3 * }

We would first generate the following source code for the dispatch
method:

int foo (I x) {
if (x instanceof D)
return <multi>_foo((D) x);
else if (x instanceof C)
return <multi>_foo((C) x);
else
return <multi>_foo((l) x);

11

compatibility.

Evolution of packages is restricted by the package-level test: if a
new class is added to an existing package, we must check that it
does not implement multiple interfaces that would render exist-
ing multimethods ambiguous. A change as simple as adding an
implements declaration to a class, without changing the class
body, will trigger a re-checking of a sealed package.

6. RELATED WORK

Multimethod dispatch is found in Common Lisp [30, 33], Dylan [32,
17], and Cecil [10, 12, 9]. These languages, however, only provide
symmetric multimethods, in which generic functions dispatch on
all arguments symmetrically. Since there is no notion of a receiver,
multimethods are outside classes, which causes a lack of encapsu-
lation. Single-dispatch languages such as {16], Smalltalk [20],

or Java [21] provide better encapsulation, but do not provide the
flexibility of multimethods.

Recently, there have been several attempts at adding multimethods
to Java to provide the best of both worlds: parasitic methods [6],
TupleJava [26], and MultiJava [13, 14].



Like our multimethods, Boyland and Castagna’s parasitic methods solved elegantly and simply.

are encapsulated multimethods [8, 7]. Parasitic methods are mul-

timethods that can attach themselves to any regular method, whichMultimethods in Java have an additional advantage over overload-

then becomes a generic function. Since an argument type of a paring. According to the Java rules for binary compatibility [21],

asite can be a supertype of the corresponding argument type of theclients of a class do not have to be recompiled when adding a

host method, this solution is semantically not as clean as our so-method to the class. With overloading, a certain method signature

lution with a declaration for the generic function. Also, parasitic was selected when compiling a method call in the client. If a more

methods allow parameter types to be interface types without re- specific method is added later, the client would continue to call the

stricting these interfaces to be package-visible, which would re- old method. When recompiling the client, the more specific method

quire a global link-time multimethod-uniqueness type check. will be chosen. With multimethods, the compiled client does not
have the method descriptor (signature and return type) of the old

TupleJava was intended to be an extension of Java with a tuple typemethod wired in, but the descriptor of the dispatch method. Even

[26]. Instead of dispatching on method arguments, a tuple is used asif there is a more specific method, the old dispatch method still

the receiver of a method. This approach has the disadvantage thaapplies.

the client has to know which arguments are used for dispatch. If an

operation is added that requires a dispatch on an additional argu-We have integrated multimethod dispatch with retroactive abstrac-

ment, the tuple type and the client have to be modified. Also, tuples tion by allowing multimethods to be dispatched on interface types.

require a global link-time multimethod-uniqueness type check. We have described a type system restriction that allows multimeth-
ods to be type-checked with only a package-wide type check equiv-

MultiJava uses Millstein and Chambers’ type restrictions [29] for alent to link-time type checking.

allowing the language to be statically typed. To allow a static

multimethod-uniqueness type check, a multimethod cannot be dis-We have presented an implementation strategy that is compatible

patched on interface types, which results in a loss of expressive-with the existing Java Byte Code format and with existing Java vir-

ness. MultiJava uses symmetric multimethod dispatch that treatstual machines. We are currently implementing Half & Half as a

the receiver the same as other arguments. For implementing thefront end of the Brew compiler.

Visitor pattern using symmetric multimethods, they introduce open

objects, that allow external methods to be added to existing classes8 REFERENCES
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