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ABSTRACT
Software often goes through a variety of extensions during its life-
time: adding new fields or new variants to a data structure, retroac-
tively creating new type abstractions, and adding new operations
on a data structure. As characterized by the extensibility problem,
it should be possible to apply any combination of these types of ex-
tensions in any order. Mainstream object-oriented languages, how-
ever, do not well support the latter two. This paper proposes two
language mechanisms that facilitate extending existing type hierar-
chies: multimethod dispatch and retroactive abstraction. For these
two mechanisms to coexist, it is necessary to allow method dispatch
on parameters of interface types, which presents problems with
static type-checking. We present a type-safe solution that com-
bines the two mechanisms by limiting multimethod type checks to
package boundaries and by compiling certain packages with multi-
methods into sealed Jar files.

1. INTRODUCTION
As software evolves, data structures might have to be extended
along several dimensions. The nature of these extensions often can-
not be foreseen at the design stage. Without appropriate support of
the programming language and in the design of the software, sim-
ple extensions might require large amounts of existing code to be
modified.

Suppose we are writing a compiler for a language the size of Java,
where the data structure for representing the parse trees consists of
100 variants. If the compiler is written in an object-oriented style,
we would represent this data structure as a class hierarchy with 100
classes. If later changes require adding additional information to
certain parse tree nodes or adding new variants, the object-oriented
style would make this straightforward by adding fields and meth-
ods to individual classes or by adding new classes to the hierar-
chy. If later changes require adding a new traversal of the parse
tree, with the direct object-oriented style we would need to add one
method to each one of the 100 classes. Similarly, adding new ab-
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stractions, such as new interfaces, would require changes to exist-
ing classes. Conversely, if the compiler were written in a functional
style, adding new fields and adding new variants would be difficult,
while adding new traversals would be straightforward.

Ideally, all of these extensions should be possible in any order with-
out requiring existing code to be modified.

Single dispatchis used in traditional object-oriented languages to
select and invoke a method based on the run-time class of the sin-
gle, distinguished receiver argument of the method invocation. This
mechanism allows adding new classes to an existing hierarchy or
overriding methods in subclasses. Single dispatch also facilitates
encapsulation of data within a class.

By contrast,multiple dispatchis a mechanism for dispatching a
method at run time based on the classes of any subset of the ar-
guments. While single dispatch is the appropriate mechanism for
the object-oriented programming style of defining data types as ex-
tensions of existing classes, multimethods provide better support
for an abstract data type or functional programming style. Also,
multimethods provide a semantically simpler alternative to static
overloading.

Multimethods facilitate the development of object-oriented soft-
ware in various ways. Notably, they allow clients of existing classes
to add new operations that dynamically dispatch on arguments of
these classes. Multimethods thus support a notion ofopen ob-
jects[29] of adding new operations to existing data structures. Mul-
timethods also support safe covariant overriding [8] and binary
methods [7].

For example, suppose we need to add a new tree traversal operation,
such as a type checker, to our parse tree data structure. Instead of
the traditional object-oriented style of adding one method to each
one of the 100 classes, which risks breaking existing code and dis-
tributes the control flow of the type checker over many source files,
multimethods allow adding a single type checker class that distin-
guishes up to 100 individual cases (one per class in the hierarchy).
Without support for multimethods, the Visitor pattern [19] could be
used for achieving a similar program structure. The Visitor pattern,
however, requires the programmer to write the dispatch mechanism
by hand and does not support adding new classes to the hierarchy
or adding traversal methods with additional or different parameters.

Most object-oriented languages provide some form ofsubtype poly-
morphism, allowing an instance of a type to be used wherever an
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instance of a supertype of that type is expected. Usually, a sub-
type relationship is definedby name. The subtype explicitly names
its supertype(s) in the type declaration. By contrast, withstruc-
tural subtyping, any type (class or interface) that implements each
method of an interface is a subtype of the interface, and any ex-
pression of a structural subtype can be used wherever a value of
the structural supertype is expected. Structural subtyping makes
the type system more flexible in situations that requireretroactive
abstractionover existing types [25].

For example, suppose we are given a precompiled library class
RandomDataAccess . We want to abstract over this class with
the restricted interfaceReadOnlyRandomAccess that does not
include thewrite() method and then add classCDRomDrive
as an alternative implementation. With named subtyping, we either
need to modify the existing class by declaring that itimplements
the new interface or write glue code in the form of the Adapter
pattern [19]. Structural subtyping allows abstracting over existing
code by simply adding an appropriate interface declaration.

Similarly, structural subtyping can be used for retroactive abstrac-
tion over a subset of the classes of an existing hierarchy such that a
new traversal can be added to work on only that subset of classes.
The new traversal would then be implemented using multimeth-
ods. Since the retroactive abstractions are interfaces, this requires
the multimethod dispatch to be performed on a parameter of an in-
terface type, which causes problems with static type-checking. A
similar need for multimethods that can dispatch on interface types
arises when adding support for closures and function types to the
language [2].

This paper explores the implications of combining encapsulated
multimethods and retroactive abstraction. Millstein and Cham-
bers [29] have described a spectrum of restrictions for multimeth-
ods with trade-offs between expressibility and modularity. By
adding encapsulated multimethods and retroactive abstraction to
Java, we achieve modularity using classes for encapsulation. We
allow interfaces as argument types of multimethods at the expense
of additional compile-time type checks through regional program
analysis. Instead of full structural subtyping, we provide a retroac-
tive abstraction declaration for abstracting over existing classes or
interfaces. Parasitic methods [6] also allow interfaces as argument
types but have a potential ambiguity problem. MultiJava [13, 14],
on the other hand, does not allow interfaces as multimethod argu-
ment types. Our extension of Java with multimethods and struc-
tural subtyping is a step in the development of Brew, a successor
language for Java with a new object model [3]. We are currently
implementing Half & Half, our extension of Java with multimeth-
ods and retroactive abstraction, as a front end of the Brew compiler.

2. MOTIVATION
Writing extensible software requires different ways of extending
existing type hierarchies: adding variants to a data structure, retroac-
tively creating new type abstractions, and adding new operations on
a data structure. Such extensions are not well supported in existing
object-oriented languages; theextensibility problem[31, 15, 24, 36,
18] characterizes the current difficulties in addressing these needs.

2.1 The Extensibility Problem
The extensibility problem considers typical paths along which soft-
ware systems evolve and, following Findler and Flatt’s descrip-
tion [18], can be summarized as follows. A software component
might consist of a data type in the form of different variants, along

with operations on those variants. A client of such a component
may want to use the component in three different ways:

• The client may want to use the component in its original
form.

• The client may want toadd a variantto the data type; this
usually requires adding a case for the new variant to each
existing operation.

• The client may want toadd an operationto the component;
this usually requires including in the new operation a case for
each existing variant.

To facilitate software maintenance and to accommodate compo-
nents available only in compiled form, such uses must be possible
without modifying or recompiling

• the original program component (data type and operations),

• existing client code, or

• existing components added as new variants to the original
datatype.

The last constraint—retroactive abstractionto allow existing, pos-
sibly compiled, components to become variants of a data type—
appears to be a novel aspect of the discussion of the extensibility
problem.

In object-oriented programming, it is common to model a data type
with variants through subtyping. A root type specifies the com-
mon operations available on the datatype, and its subtypes repre-
sent the variants. We use the following example, based on work
by Krishnamurthi, Felleisen, and Friedman [24], to compare dif-
ferent object-oriented attempts at solving the extensibility prob-
lem. Specifically, the example involves a data type with root type
SimpleShape and two original variants,Circle andTrans -
(lation), as well as some original operations on shapes. Another
variant as well as other operations will be added later. The com-
mon declarations for the data type are given here:

import java.awt.Point;
import java.awt.Rectangle;
import java.awt.Shape;

interface SimpleShape {
java.awt.Rectangle getBounds();
// other original shape methods

}

class Circle implements SimpleShape {
double r;
public Circle(Point p, double r) {...}
public Rectangle getBounds() {...}
// other original shape method
// implementations for Circle

}

class Trans implements SimpleShape {
Point p;
SimpleShape s;
public Trans(Point p, Shape s) {...}
public Rectangle getBounds() {...}
// original shape method
// implementations for Trans

}
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2.2 Extensibility with Encapsulated Multimeth-
ods and Retroactive Abstraction

Based on the aforementioned example, we will now illustrate the
combination of retroactive abstraction and encapsulated multimeth-
ods.

The interfacejava.awt.Shape from the Java Abstract Window
Toolkit [35] is an existing component that we wish to add as a vari-
ant; we use retroactive abstraction to declarejava.awt.Shape
as a subtype ofSimpleShape .

interface java.awt.Shape extends SimpleShape;

To add a new operation to the component, we provide the class
Containment , which defines the multimethodcontains . This
multimethod consists of ageneric methodthat provides the static
type signature of the multimethod, as well as a case for each exist-
ing variant of the data type.

class Containment {
public generic boolean

contains(SimpleShape s, Point o);

public boolean
contains(SimpleShape s, Point o) {...}

public boolean
contains(Shape s, Point o) {...}

public boolean
contains(Rectangle r, Point o) {...}

public boolean
contains(Circle c, Point o) {...}

public boolean contains(Trans t, Point o) {
return contains(t.s,

new Point(o.x - t.p.x, o.y - t.p.y));
}

}

To add a new variant to the data type, we define the classUnion .
For using the operationcontains on the new variant, we provide
the classUnionContainment , an extension ofContainment
that adds a case to the multimethodcontains to handle the new
variant.

class Union implements SimpleShape {
SimpleShape s, t;
public

Union(SimpleShape s, SimpleShape t) {...}
public Rectangle getBounds() {...}

}

class UnionContainment extends Containment {
public boolean contains(Union u, Point o) {

return contains(u.s, o)
|| contains(u.t, o);

}
}

The following example of client code illustrates the application of
the multimethod to a shape and a point. As operations are added in
the form of multimethods, clients can continue to use the original
variants to construct instances of the data type.

new UnionContainment().contains(

new Trans(new Point(3, 4),
new Union(new Circle(3),

new Circle(5))),
new Point(2, 3))

2.3 Existing Approaches to Extensibility
We will now take a look at existing object-oriented approaches to
solving the extensibility problem.

It is easy to add new variants to the original example in the form of
new subtypes, such asUnion .

class Union implements SimpleShape {
SimpleShape s, t;
public

Union(SimpleShape s, SimpleShape t) {...}
// shape method implementations for Union

}

It is difficult, however, to add new operations to the data type, since
this requires adding a method to the root type as well as each ex-
isting subtype. Furthermore, doing so requires modifying existing
client code to use the extended variants instead of the original ones.

interface SimpleShape {
Rectangle getBounds();

}

// original variants...

interface ShapeWithContainment
extends SimpleShape {
boolean contains(Point o);

}

class CircleWithContainment extends Circle
implements ShapeWithContainment {
public boolean contains(Point o) {...}

}

// extensions of the other variants...

The Visitor pattern [19] provides a partial solution to this problem.
Here the root type specifies only a single dispatch operation that
takes a visitor (an object representing an operation on the data type)
as an argument. Based on the assumption that the data structure
is stable, the visitor interface requires a method for each existing
variant of the data type. The Visitor pattern makes it easy to add
new operations in the form of a single class.

interface SimpleShape {
Object accept(ShapeVisitor v);

}

interface ShapeVisitor {
Object visitCircle(Circle c);
Object visitTrans(Trans t);

}

interface UnionVisitor extends ShapeVisitor {
Object visitUnion(Union u);

}

class Circle implements SimpleShape {
// ...
public Object accept(ShapeVisitor v) {
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return v.visitCircle(this);
}

}

// implementations of the other variants...

class Containment implements ShapeVisitor {
Point o;
public Containment(Point o) { this.o = o; }
public Object visitCircle(Circle c) {...}
public Object visitTrans(Trans t) {...}

}

However, adding new variants is now hard, since it requires extend-
ing the visitor interface. Doing so requires modifying each existing
visitor class to include a method for the new variant.

class Union implements SimpleShape {
SimpleShape s, t;
public

Union(SimpleShape s, SimpleShape t) {...}
public Object accept(ShapeVisitor v) {

return ((UnionVisitor) v)
.visitUnion(this);

}
}

class UnionContainment extends Containment
implements UnionVisitor {
public UnionContainment(Point o) {

super(o);
}
public Object visitUnion(Union u) {...}

}

We observe an interesting duality between the two approaches. In
both cases, it is necessary to plan ahead to support the particular
programming protocol so that later modifications of existing code
can be avoided.

• If ordinary subtyping is used to add operations to the data
type, then client code should be parameterized ahead of time
by an Abstract Factory [19]. In the absence of a decent mod-
ule language [18], this parameterization plays the role of a
simple dynamic linker and avoids hard-coding the client to a
specific data type implementation.

interface ShapeFactory {
SimpleShape createCircle(double r);
SimpleShape

createTrans(Point p, SimpleShape s);
// ...

}

class SimpleShapeFactory
implements ShapeFactory {
public SimpleShape

createCircle(double r) {
return new Circle(r);

}
// ...

}

class ShapeFactoryWithContainment
implements ShapeFactory {
public SimpleShape

createCircle(double r) {
return

new CircleWithContainment(r);
}
// ...

}

// client with ShapeFactory parameter

factory.createTrans(new Point(3, 4),
factory.createUnion(

factory.createCircle(3),
factory.createCircle(5))))

• If operations are implemented as visitors, then any visitors
that create new visitor instances should implement and use
Factory Methods [19] for this purpose [24], which are a spe-
cial case of Abstract Factory where the factory’s client also
acts as the factory itself. The Visitor pattern limits the ar-
guments of each visitor method to a single data type vari-
ant. The resulting stateful visitors may need to create ad-
ditional visitor instances with modified state to model the
partial application of the same function to a modified ar-
gument. Without this technique, aUnion shape within a
Trans shape would lead to a run-time exception at the cast
down toUnionVisitor in the methodUnion.accept .

class Containment {
// ...
public Containment

createContainment(Point o) {
return new Containment(o);

}
public Object visitTrans(Trans t) {...}

return t.s.accept(
createContainment(

new Point(o.x - t.p.x,
o.y - t.p.y)));

}
}

class UnionContainment
extends Containment {
// ...
public Containment

createContainment(Point o) {
return new UnionContainment(o);

}
public Object visitUnion(Union u) {

return new Boolean(
((Boolean) u.s.accept(this))

.booleanValue()
|| ((Boolean) u.t.accept(this))

.booleanValue());
}

}

Since the Visitor pattern requires visitor support in each variant of
the data type, it does not directly accommodate retroactive abstrac-
tion involving existing components. By contrast, using ordinary
subtyping allows a limited form of retroactive abstraction by adding
a variant that is a subtype of the existing component and a subtype
of the data type’s root type.1

Recently, Zenger and Odersky [37, 38] presented a new program-
ming protocol for extensible visitors. This protocol is based on the
Visitor pattern, making it easy to add operations, but overcomes

1This is no problem in Java as long as the root type of a data type
is an interface.
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the limitations of the Visitor pattern by adding default cases to op-
erations; a default case handles future extension of the data type
on which an operation is used. Since the protocol is complex, lan-
guage support for extensible data types would be desirable.

3. LANGUAGE DESIGN
We argue that the combination of multimethods and retroactive ab-
straction has the advantages of the existing approaches while avoid-
ing some of their drawbacks. Specifically, our approach has the
following favorable characteristics:

• No support for the Visitor protocol is needed in the data type.

• No parameterization of the client code with an Abstract Fac-
tory or other form of dynamic linking protocol is needed.

• Operations on the data type can be added in the form of new
multimethods as easily and elegantly as in the Visitor pattern.

• Variants of the data type can be added easily.

• Existing types can be added as variants of the data type using
retroactive abstraction.

• Ordinary methods and multimethods can coexist in the data-
type.

• Multimethods can be type-checked statically.

• More specific return types for operations can be defined. In
contrast, the Visitor pattern supports only a single return type,
typically Object .

• Additional arguments for operations can be defined. In con-
trast, the Visitor pattern requires such information to be part
of the state of the visitor, requiring Factory Methods to sup-
port the extension of the visitor state.

In the remainder of this section, we present each of the two pro-
posed language mechanisms, retroactive abstraction and multimeth-
ods, from a language design perspective.

3.1 Retroactive Abstraction
Consider an application that performs read-only random access on
databases located either on disk or on a CD-ROM drive [25]. We
access disk files using the classjava.io.RandomAccessFile ,
but using only the methods for reading from the file, not the ones
for writing to the file.

class RandomAccessFile
implements DataOutput, DataInput {
public void close()

throws IOException {...}
public FileDescriptor getFD()

throws IOException {...}
public long getFilePointer()

throws IOException {...}
long length() throws IOException {...}
void seek(long pos)

throws IOException {...}
// implementations of methods from the
// interfaces DataOutput and DataInput

}

We also provide a class for accessing information on CD-ROM
drives. Since CD-ROM drives are read-only devices, the corre-
sponding class implements only interfacejava.io.DataInput
and provides additional methods for random access:

class CDRomDrive implements DataInput {
long length() throws IOException {...}
public void seek(long pos)

throws IOException {...}
// implementation of methods
// from interface DataInput

}

Besides the methods for reading data, the application needs to use
the random-access methodseek . We therefore would need an in-
terface of the form

interface ReadOnlyRandomAccess
extends DataInput {
long length() throws IOException;
void seek(long pos) throws IOException;

}

Unfortunately, the Java library does not provide such an interface;
The methodslength andseek are not provided in either of the
interfacesDataInput andDataOutput .

Since classRandomAccessFile is part of the library and cannot
be modified, we would have to write an Adapter class [19] that im-
plements the interfaceReadOnlyRandomAccess by name and
forwards requests to classRandomAccessFile .

Instead of requiring users to write and use such an Adapter class,
we provide a new language construct that retroactively establishes
a subtype relationship between an existing class and an interface.

class RandomAccessFile
implements ReadOnlyRandomAccess;

Such a retroactive abstraction declaration can appear in any context
in which regular class declarations are allowed and where both the
existing class and the interface are visible.

As long as classRandomAccessFile structurally conforms to
interfaceReadOnlyRandomAccess , we allow the introduction
of such retroactive subtype relationships. The type check performed
for a retroactive abstraction is the same as if theimplements
clause were added to the original class definition.

It is the programmer’s responsibility to make sure that an interface
that retroactively abstracts over an existing class has a specification
that is met by the implementation provided by that class, just as it is
the programmer’s responsibility in standard Java (and many other
object-oriented languages) to ensure that a class that implements an
existing interface obeys the specification of that interface.

Similarly, for retroactively abstracting over an existing interfaceJ
with a new interfaceI , we provide the construct

interface J extends I;
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Both of these retroactive abstraction relationships could be inferred
from the code instead of declared [25, 5, 4, 1]. E.g., given an as-
signment of the form

ReadOnlyRandomAccess f
= new RandomAccessFile();

the compiler could verify that the right-hand-side class implements
all the methods of the left-hand-side interface, i.e., that the class
is a structural subtype of the interface. However, this has the dis-
advantage that accidental retroactive abstractions where the class
does not satisfy the intended semantics of the interface are difficult
to track down. A retroactiveimplements declaration is more
visible in the code and can be regarded as an abbreviation for an
Adapter class.

3.2 Multimethods
Multimethod languages without single dispatch, such as Common
Lisp [30, 33], Dylan [32, 17], or Cecil [10, 12, 9], provide symmet-
ric multimethods, where the dynamic dispatch is performed on all
arguments symmetrically. MultiJava [13, 14] adopted this style of
multimethods as well.

For an extension of a single dispatch language such as Java, we ar-
gue that purely symmetric multimethods are undesirable since they
do not fit into the language as well as encapsulated multimethods.
Java allows the receiver of a method to access the private fields of
the surrounding class. With symmetric multimethods, a method
would either have privileged access to the classes of all parameters
or to none. While the former would violate Java’s encapsulation,
the latter is often too restrictive. If only one parameter is treated
differently for encapsulation purposes, then this should be the re-
ceiver as for other methods in Java.

Java already has overloaded methods, where out of a set of methods
with the same name the appropriate method signature is selected
at compile time based on the static types of the arguments. Mul-
timethods are similar to overloaded methods, except that method
selection happens at run time. Removing overloading from the lan-
guage is not an option since it would break existing code. For the
two mechanisms to coexist, we argue that it is desirable that multi-
methods can be used exactly the same way and in the same contexts
as overloaded methods with the only exception being that method
selection happens at run time.

By defining multimethods, like overloaded methods, as methods
inside a class and by using the same semantics for the receiver ar-
gument, multimethods become encapsulated. Encapsulated multi-
methods are useful for defining binary methods [8, 7, 6] but they
also provide additional flexibility for writing visitors. Suppose we
want to add twodraw operations to ourSimpleShape hierarchy
for drawing shapes in different styles. By writing these operations
as encapsulated multimethods and by using an abstract factory, we
can parameterize a client ofdraw to use either of the twodraw
implementation. If this additional parameterization is not required,
a visitor can also be defined as a set of symmetric multimethods by
declaring them static.

Like a set of overloaded methods in Java, we define ageneric func-
tion as a set of methods (itsmultimethodcomponents) with the
same name but with different signatures. Unlike an overloaded
method, which is selected at compile time based on the static type

of the arguments, a multimethod component of a generic function
is selected at run time based on the dynamic types of the arguments.

We make the signature of the generic function explicit by requir-
ing the programmer to declare the generic function by providing a
method signature modified by the keywordgeneric . In the fol-
lowing example, the generic functionprint is implemented by
two multimethods:

public generic void print(C x);
public void print(C x) { ... }
public void print(D x) { ... }

where typeD must a subtype of typeC. The typesC andD can be
interface types as well as class types. We do not allow dispatch
on basic types since Java does not define subtype relationships for
them.

For dispatching on null pointers, we also provide the syntax

public void print(null) { ... }

using the patternnull instead of a parameter declaration. If no
multimethod is defined for dispatching on null, the multimethod
for the most general parameter type is selected. It is an error if
there is no unique method with a most general parameter type.

In order to avoid any confusion between multimethods (dynamic
overloading) and static overloading we do not allow multimethods
to be mixed with static overloading. In the above example, the
declaration of the generic function forces all other methods with the
same name to be treated as multimethods of that generic function.
It is a compile-time error if the class where the generic function
is first declared inherits any methods with the same name as the
generic function.

The ban on mixing dynamic and static overloading is not strictly
necessary. It is conceivable to have a generic function and an-
other method with the same name that is not a multimethod of the
generic function (e.g., we could label multimethods with a special
keyword to distinguish them from methods that statically overload
the generic function). However, this would complicate method se-
lection tremendously and has few, if any, practical uses. The only
reason for allowing this would be to work around Java’s distinction
between simple types (int , double , etc.) and reference types.
It might make sense to allow static overloading of a generic func-
tion with methods that have one or more parameters belonging to a
simple type.

The generic function declaration may be modified by access modi-
fiers, and may be declaredstatic and/orfinal (and in addition
synchronized and/orstrictfp , but these merit no further
discussion). It may, however, not be declaredabstract . If the
generic function is final, this means that the set of its multimethods
may not be extended in a subclass, although individual multimeth-
ods may still be overridden. If the generic function is static, this
means that no dynamic dispatch based on the receiver argument
takes place, only symmetric dispatch based on all argument types,
i.e., we are dealing with ordinary symmetric multimethods.

Multimethods must be declared to have the same protection as the
generic function they are part of. They can be further modified by
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abstract or final (and/orsynchronized andstrictfp ).
If one or more multimethods are abstract, the surrounding class
must be abstract. If a multimethod is final, this means, as usual,
that it cannot be overridden in a subclass. Like regular methods,
non-final multimethods can be overridden in a subclass. If a mul-
timethod callssuper the overridden multimethod from the super
class is executed.

If a multimethod declares that it throws an exception, the generic
function must declare a supertype of that exception. Likewise, the
result type and each parameter type of the generic function must be
a supertype of the respective result type or parameter type of each
multimethod.

To resolve a multimethod call of the formx.print(y) , we first
look for a declaration of a generic functionprint in the static
type ofx , where the type ofy must be a subtype of the parameter
type ofprint . Then at run-time, the generic function selects the
appropriate multimethod. If the multimethod was overridden in a
subclass, Java’s single dispatch mechanism then selects the appro-
priate method from the dynamic type of the receiver. These steps
in selecting a method are the same as for overloading, except that
in case of overloading the second step happens at run time.

4. TYPE-CHECKING
4.1 Retroactive Abstraction
Retroactive abstraction requires only a few changes to Java’s type-
checking algorithm, affecting mainly assignments of values to (the
equivalent of) L-expressions [25]. These occur in a small num-
ber of places, namely explicit casts, assignment statements, pass-
ing values to the parameters of a method on method invocation, and
assigning method results using areturn statements (alsothrow
statements, but since the type of the thrown expression must be a
class type, we can ignore this case here).

Type-checking proceeds by examining the declared type of the ex-
pression being assigned to and of the assigned expression. We first
check whether the expression being assigned to is a supertype of the
type of the assigned value, in which case the assignment statement
is well-typed. Otherwise we carry out any other standard Java type-
checks for assignment. The supertype relation is the reflexive tran-
sitive closure of the union of theextends and theimplements
relations, possibly declared retroactively.

Checking retroactive abstraction declarations of the form

class C implements I;

is straightforward: exactly the same type-check is carried out as for
an ordinaryimplements clause of a class declaration.

Similarly, the type check required for checking

interface I extends J;

is exactly the same as for type-checking an ordinaryextends
clause of an interface declaration.

As explained below, the subtype relation defined by a retroactive
abstraction declaration is needed for performing the multimethod

completeness and uniqueness type checks. To allow these type
checks to be performed across class boundaries, the subtype re-
lation must be recorded in a class file. The byte code format [28]
allows user-defined attributes to be included in a class file; standard
virtual machines would simply ignore these attributes. We use this
mechanism to record the subtype relation defined by a retroactive
abstraction declaration in the byte code file for the class containing
the declaration or, if the declaration is outside class scope, in the
byte code file for the public class of the source file.

4.2 Multimethods
Generic functions and their multimethods require no special type-
check on the client-side, i.e., where a generic function is invoked.
The method invocation type-check, including the above modifica-
tions, is carried out on the basis of the declared signature of the
generic function.

The generic function does, however, require an elaborate type check
on the implementation side, i.e., when it is declared or extended
with new multimethods. A generic function is declared exactly
once, and we refer to its declaration site as thebase class ofthe
generic function. This means that when a declaration modified by
the keywordgeneric is encountered, we must first check that it
does not override a generic function from a supertype (hiding, how-
ever, is allowed for static generic functions). For each method not
modified bygeneric , check if there exists a generic function with
the same name and a conforming type, which can be declared in the
same class or inherited from a superclass; if there is, the method is
a multimethod of that generic function.

Next, the set of all multimethods of a generic function is deter-
mined. It consists of all multimethods (with the same name and a
conforming type) declared in the current class and any multimeth-
ods (with the same name and a conforming type) available in the
superclass, except those that are overridden by a multimethod in the
current class. Overriding of multimethods is the same as method
overriding in standard Java.

Dispatch based on the non-receiver arguments is symmetric and
requires the usual checks for symmetric multimethods, namely:

completeness:for any argument tuple there must exist at least one
applicable multimethod; and

uniqueness: for any argument tuple there must exist at most one
most specific applicable multimethod.

Since we allow interface types as argument types of multimeth-
ods, the usual ways of carrying out these checks [29, 14] are not
directly applicable. For example, consider the following declara-
tions, whereI is an interface, andJ andK are sub-interfaces ofI
but neither is a sub-interface of the other:

generic void print(I);
void print(null) { ... }
void print(J x) { ... }
void print(K x) { ... }

If there is a class that implements bothJ andK, uniqueness is vi-
olated. Type-checking needs to ensure that such a class does not
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exist. However, the information needed to check this is not neces-
sarily available at compile-time in the case of separate compilation
when the full type hierarchy is not known.

To remedy this situation, we propose using a regional link-time
check at the level of a Java package. More precisely, we impose
the following restriction:

For any two multimethods of the same generic func-
tion, if one has a formal parameter of an interface type,
the other has in the same position a formal parameter
of an interface type, and the two interface types are
incomparable (neither is a subtype of the other), then
at most one of the interfaces can be publicly visible
or can be (retroactively) extended by a publicly visible
interface.

In the previous example, if interfaceJ is public butK is not and
does not have a public subinterface (soK must be declared in the
same package as the class containing the generic function), there
can be no classoutsidethe package of the generic function that
implements bothJ andK, sinceK and any subinterfaces ofK are
not visible outside its package.

However, we still need to make sure that there is no classinsidethe
package of the generic function that implements bothJ andK. This
is problematic in standard Java, since packages are by default open
in the sense that one may retroactively add classes to an existing
package. For example, it is possible to create a file containing the
following Java code:

package java.lang;
public class Foo {}

If this file is compiled and the resulting bytecode file is placed in
the classpath of the Java virtual machine, one can then write code
such as this:

class Bar { Foo f; }

An explicit import declaration is not needed, since the package
java.lang is imported by default, hence the nameFoo is vis-
ible. This is what we mean when we say that thejava.lang
package is open.

In ordinary Java, this lack of modularity is not a major problem.
However, in the presence of multiple dispatch we are faced with a
problem of missing encapsulation: in the example above we noted
that a class that implements bothJ andK would result in a violation
of the uniqueness property that allows unambiguous resolution of
a multimethod invocation; but if a package is open nothing could
stop a developer from adding such a class after the generic function
in this example has been successfully compiled, potentially giving
rise to a uniqueness violation that cannot be detected at compile
time.

In a traditional compilation model in which linking is controlled
by the developer, an appropriate type-check could be carried out at
link-time when the entire class hierarchy is known (but see below
on dynamic loading of classes). However, this approach does not

fit into the standard Java compilation model. Instead, we propose
the use ofpackage sealing, which is already part of Java. A pack-
age can be marked as sealed in a Jar file, which means that all of its
classes must be loaded from the same Jar file. If the compiler writes
its bytecode output into Jar archives it can attain a certain amount
of control over the class inventory of a package. In particular, if
there are restrictions on what interfaces a class may implement be-
cause those interfaces are used for dispatching multimethods, this
restriction can be recorded inside the Jar file for the package and
the compiler can then ensure that all classes comply with any such
restrictions and, if necessary, seal the package. This compilation
scheme requires no changes to a JVM with class loaders that re-
spect the integrity of sealed packages.

Notice also that this introduces a kind ofclosed world assump-
tion, since package-local classes and interfaces can no longer be
extended, but all their subtypes are known when the package is
sealed. In other words, package-local types now behave like dis-
joint sum types in functional languages (e.g., in the ML family).

The only way whereby a class that implements bothJ andK could
still be present at run-time is via explicit dynamic loading [27].
The compiler can generate a special class loader that carries out
any necessary checks when a class is loaded at run time and throws
a linkage error in case a problem is detected.

With the above restriction and the package-level check in place,
the rest of the implementation-side checks proceed as usual [12]:
construct a partially ordered set of tuples of the form(t1, . . . , tn)
where eachti is a (retroactive) subtype of the type of theith param-
eter of the generic function and a (retroactive) supertype of the type
of theith parameter of some multimethod; then check that the com-
pleteness and uniqueness properties are satisfied for all elements of
this set.

For enforcing multimethod completeness we use the same restric-
tion as in MultiJava [13, 14, 29], but for package boundaries instead
of file boundaries:

If a generic method has an abstract class or an inter-
face as a parameter type and a dispatch is performed
on this parameter, then there must be a multimethod
implementation with the same parameter type, unless
the abstract class or interface is only package visible
and does not have a public subclass or subinterface for
which no multimethod is defined.

E.g., the generic functionprint above does not have a multi-
method of typeprint(I) . If I is public, an error is reported
saying that the multimethod is potentially incomplete becauseI
could be implemented by a class outside the package. IfI has
only package visibility and there is no class within the package that
only implementsI but neitherJ nor K, then the generic function
type-checks. In the latter case, the package must also be sealed
in a Jar file to prevent a public subtype ofI being added without
re-checking the multimethod.

For constructing this partially ordered set of tuples, as well as for
checking the restriction on public interfaces, the compiler must col-
lect all retroactive abstraction relations from the package. These
were recorded in the byte code files when the corresponding decla-
rations were type-checked.
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5. COMPILATION
Compilation is best conceptualized as a source code transformation
that maps code containing retroactive abstraction declarations or
multimethods into ordinary Java code. We will implement these
language mechanisms in the Brew compiler as a transformation of
the parse trees.

5.1 Retroactive Abstraction
In previous work we have described an extension of Java with struc-
tural subtyping [25]. The implementation approach of modifying
the type checker in the virtual machine we described in that paper
also works for retroactive abstraction. Because of the large installed
base of Java VMs, it is preferable, though, for the compiler to gen-
erate standard byte code that can run on any virtual machine.

If modifying the virtual machine is not an option, retroactive ab-
straction can be implemented by using adapter objects that take the
place of objects of classes that have been retroactively abstracted
over. The basic idea is illustrated by the following example [25]:

interface I {
byte aMethod();
void anotherMethod(int x);

}

class C implements I;

Here,C is an existing class type for which source code may not
be available. The retroactive abstraction declaration gives rise to
the following adapter class. The name of the adapter class is not
a legal Java identifier, but can nevertheless be represented in Java
bytecode.

class Ad@pter_C_I implements I {
final C instance;
Ad@pter_C_I(C i) {

instance = i;
}
public byte aMethod() {

return instance.aMethod();
}
public void anotherMethod(int x) {

instance.anotherMethod(x);
}
public int hashCode() {

return instance.hashCode();
}
// etc. for other specified methods

}

In other words, an adapter object forwards all methods from the
interface thatC has been declared to implement, including those
from java.lang.Object , to aC instance it contains.

Consider a code fragment such as the following:

class C implements I;
C c;
I i = c;

Now the last assignment statement can be translated into

I i = new Ad@pter_C_I(c);

This translation will be revised in the subsequent discussion and
serves mostly as an illustration of the basic idea. Such a translation
is possible because the adapter object assigned toi is actually an
instance of interfaceI in ordinary Java.

A few problems remain, which arise from the fact that this compi-
lation scheme uses potentially many different objects to represent a
singleCobject, namely the object itself plus any number of adapter
objects. For example, the following code snippet is problematic:

C c = Factory.createC();
I i = c;
if (c == i) // ...

In this case, the expression(c==i) should evaluate totrue no
matter at what pointC was declared to implementI . But the as-
signment toi created an adapter object that is different from the
value ofc , hence the pointer comparison on the last line will fail.

The general remedy is to use adapter objects very cautiously and
only in contexts where they are absolutely necessary. Note that
Java’s== operator on reference types can be thought of as having
been declared as

boolean ==(Object x, Object y);

This means that in(c==i) both c and i are implicitly cast to
Object . But in that case the adapter is no longer needed, since its
sole purpose was to disguiseCobjects asI objects; for purposes of
pointer comparison we always want to get rid of any adapters.

We must modify the translation scheme slightly so that the environ-
ment contains the following interface:

public interface Ad@pter {
Object getInstance();
Object toObject();

}

Now we define the following transformer of expressions that dis-
cards any adapters, if present:

unwrap(x) := ((x instanceof Ad@pter)?
((Ad@pter)x).toObject()
: x)

The above adapter has to be modified slightly to implement the
Ad@pter interface:

class Ad@pter_C_I implements Ad@pter, I {
final C instance;
Ad@pter_C_I(C i) {

instance = i;
}
public Object getInstance() {

return instance;
}
public Object toObject() {

return unwrap(instance);
}
// remainder unchanged

}
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We can now translate a pointer comparison of reference types such
as(c==i) into

unwrap(c) == unwrap(i)

This translation clearly preserves the intended semantics of pointer
comparison in the presence of retroactive abstraction via adapters.

A similar issue arises withinstanceof expressions. If we have
an objectc of classC that is a subtype ofI , no matter where
that subtype relationship was declared, then(c instanceof
I) must evaluate totrue . The following nonstandard cases arise
when retroactive abstraction is involved:c is an adapter object and
I is a supertype of the object wrapped up inc , but not ofc it-
self. In this case(unwrap(c) instanceof I) evaluates to
true . Or c is not an adapter object but aC object, andI was
retroactively declared as a (not necessarily immediate) supertype
of C. In that case we need a separate mechanism for keeping track
of retroactively introduced subtype relations.

We need a global data structure that keeps track of the nonstandard
subtype relations. The following design is meant to be compatible
with on-demand class loading:

class Registry {
// Register c as a subtype of i
// and use a as the mediating adapter.
public static void

register(Class c, Class i, Class a) {...}

// Test whether c is an instance of i.
public static boolean

conforms(Object c, Class i) {...}

// Return a representation of c that is
// an instance of i; throw an exception
// if the conversion does not succeed.
// Conversion is guaranteed to succeed
// if conforms(c,i) is true.
public static Object

convert(Class i, Object c)
throws RuntimeException {...}

}

Here theconforms() method is analogous to aninstanceof
test, and theconvert() method mirrors a cast expression, as we
shall see shortly.

Now we can translate an expression like(c instanceof I)
into

Registry.conforms(c, I.class)

The registry also handles all type conversions of class or inter-
face types, including explicit casts, but also implicit upwards casts
in assignment statements, parameter instantiations,return state-
ments, etc. Explicit casts, such as

(I) c

are translated as

(I) Registry.convert(I.class, c)

Unwrapping of adapters is also performed for the implicit upward
casts in assignment conversions. In particular, it is always possible
to unwrap an object when assigning it to an expression of declared
typeObject . For example, the following code

I i = new C(); // create adapter
Object o = i; // adapter not needed, toss it
C c = (C) o; // no action required

// because (o instanceof C)
if (i==c) // true

is translated into

I i = (I)Registry.convert(I.class, new C());
Object o = unwrap(i);
C c = (C) o;
if (unwrap(i)==c)

ClassRegistry can be implemented as a static table that records
the adapter classes for each registered occurrence of retroactive ab-
straction. For implementingconforms(c,i) , we search whether
there is a chain of typest0, . . . , tn, wherec = t0, i = tn, andti is
a (retroactive) subtype ofti+1. For testing whetherti is a retroac-
tive subtype ofti+1 it is not necessary to perform the full type
check; since only retroactive subtype relationships are allowed that
were checked at compile time, it is sufficient to look up the table.
Results of this search can be memoized to speed up future searches.
Similarly, for implementingconvert(i,c) , we find the chain
of subtypes as above and insert the adapters found in the table for
retroactive subtype relationship.

The disadvantage of this translation scheme using adapters and the
registry is that it does not work for native methods. The author of
native methods must manually write the same code for unwrapping
adapters and for using the registry as what is inserted by the com-
piler. It is not possible, however, to modify existing native meth-
ods, such as those used for implementingjava.lang.Thread .
Since most existing native methods, however, do not operate on
user objects and have no need to compare them for equality or
to perform retroactive subtype tests, we believe that this will not
be a problem in practice. Similarly, there are potential problems
when passing an object wrapped with an adapter to an existing li-
brary method. While an implementation that modifies the virtual
machine is semantically cleaner and works for native methods, we
believe that using adapters is more desirable in practice than modi-
fying the virtual machine.

5.2 Multimethods
Code generation for generic functions and their multimethods is
illustrated by this example:

class A {
generic int foo(I);
int foo(I x) { /* 1 */ }
int foo(J x) { /* 2 */ }
int foo(null) { /* 3 */ }

}

This is transformed into ordinary Java code, with the exception of
the method names, which are not legal Java identifiers, but can nev-
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ertheless be represented in Java bytecode with the names shown
here.

class A {
int foo(I x) {

if (x == null)
return <multi>_foo_<null>();

else if (x instanceof J)
return <multi>_foo((J) x);

else
return <multi>_foo(x);

}
int <multi>_foo(I x) { /* 1 */ }
int <multi>_foo(J x) { /* 2 */ }

}

For code generation, multimethods are simply renamed by prefix-
ing their name with<multi>_ , effectively making them inacces-
sible to ordinary class members. The renamed methods are given
private access if the generic function hasprivate access;
protected access if the generic function is eitherpublic or
protected ; or default (package) access if the generic function
has default access, so that they can be overridden in a subclass.
Recall that we said above that multimethod overriding behaves the
same as ordinary method overriding in Java; here we see that it
actually is the exact same thing.

The generic function declaration is transformed into a method with
the same name and signature that carries out the symmetric dis-
patch based on the run-time argument types. There are many ways
to perform this form of dispatch [14], but for purposes of expo-
sition we show a simple way to do this usingif statements and
instanceof tests. In general, though, it is possible to generate
more efficient code than a cascading sequence ofinstanceof
tests [11] when dispatching on multiple arguments.

The dispatch method corresponding to the generic function must
be generated in the generic function’s base class and overridden in
any subclass that adds new multimethods.

Due to the presence of retroactive abstraction and the adapter classes
described above the generated dispatch code might include some
redundancies. Consider the following code snippet, whereD is a
subclass ofCandI has been retroactively declared to abstract over
classC:

class B {
generic int foo(I);
int foo(I x) { /* 1 */ }
int foo(C x) { /* 2 */ }
int foo(D x) { /* 3 */ }

}

We would first generate the following source code for the dispatch
method:

int foo (I x) {
if (x instanceof D)

return <multi>_foo((D) x);
else if (x instanceof C)

return <multi>_foo((C) x);
else

return <multi>_foo((I) x);
}

Then the translation for retroactive abstraction would turn this into:

int foo (I x) {
if (x instanceof Ad@pter_C_I

&& ((Ad@pter_C_I) x).instance
instanceof D)

return <multi>_foo(
(D) ((Ad@pter_C_I) x).instance);

else if (x instanceof Ad@pter_C_I
&& ((Ad@pter_C_I) x).instance

instanceof C)
return <multi>_foo(

(C) ((Ad@pter_C_I) x).instance);
else

return <multi>_foo((I) x);
}

However, the above code contains redundant checks and casts. Since
retroactive abstraction must be declared explicitly, the new subtype
relations it introduces are known at compile time. This informa-
tion can be used to generate more efficient code like the following
version of the dispatch method:

int foo(I x) {
if (x instanceof Ad@pter_C_I) {

C c = ((Ad@pter_C_I) x).instance;
if (c instanceof D)

return <multi>_foo((D) c);
else

return <multi>_foo(c);
} else

return <multi>_foo(x);
}

5.3 Binary compatibility
Since multimethods are renamed and made inaccessible, changes
to the multimethods, including removal of a multimethod, do not
affect binary compatibility, in the following sense: client code that
calls the generic function will link without error after the multi-
methods were changed (provided the package containing the generic
function was re-checked). We consider this to be an improvement
over static overloading, since removing one method among a set of
methods that share an overloaded name does not preserve binary
compatibility.

Evolution of packages is restricted by the package-level test: if a
new class is added to an existing package, we must check that it
does not implement multiple interfaces that would render exist-
ing multimethods ambiguous. A change as simple as adding an
implements declaration to a class, without changing the class
body, will trigger a re-checking of a sealed package.

6. RELATED WORK
Multimethod dispatch is found in Common Lisp [30, 33], Dylan [32,
17], and Cecil [10, 12, 9]. These languages, however, only provide
symmetric multimethods, in which generic functions dispatch on
all arguments symmetrically. Since there is no notion of a receiver,
multimethods are outside classes, which causes a lack of encapsu-
lation. Single-dispatch languages such as C++ [16], Smalltalk [20],
or Java [21] provide better encapsulation, but do not provide the
flexibility of multimethods.

Recently, there have been several attempts at adding multimethods
to Java to provide the best of both worlds: parasitic methods [6],
TupleJava [26], and MultiJava [13, 14].
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Like our multimethods, Boyland and Castagna’s parasitic methods
are encapsulated multimethods [8, 7]. Parasitic methods are mul-
timethods that can attach themselves to any regular method, which
then becomes a generic function. Since an argument type of a par-
asite can be a supertype of the corresponding argument type of the
host method, this solution is semantically not as clean as our so-
lution with a declaration for the generic function. Also, parasitic
methods allow parameter types to be interface types without re-
stricting these interfaces to be package-visible, which would re-
quire a global link-time multimethod-uniqueness type check.

TupleJava was intended to be an extension of Java with a tuple type
[26]. Instead of dispatching on method arguments, a tuple is used as
the receiver of a method. This approach has the disadvantage that
the client has to know which arguments are used for dispatch. If an
operation is added that requires a dispatch on an additional argu-
ment, the tuple type and the client have to be modified. Also, tuples
require a global link-time multimethod-uniqueness type check.

MultiJava uses Millstein and Chambers’ type restrictions [29] for
allowing the language to be statically typed. To allow a static
multimethod-uniqueness type check, a multimethod cannot be dis-
patched on interface types, which results in a loss of expressive-
ness. MultiJava uses symmetric multimethod dispatch that treats
the receiver the same as other arguments. For implementing the
Visitor pattern using symmetric multimethods, they introduce open
objects, that allow external methods to be added to existing classes
without defining a subclass. This causes the semantics of method
dispatch on the receiver to change without a corresponding syntac-
tic change, which makes client code harder to debug. For a given
method call, it is no longer obvious where to find the method that
will be executed; it may not be in the class of the receiver any-
more. Another problem with MultiJava is that by allowing meth-
ods to be dispatched on some arguments but overloaded on oth-
ers, the method selection algorithm becomes unnecessarily com-
plicated. Like with overloading in Java, method selection consists
of compile-time overload resolution and a run-time dispatch.

Retroactive abstraction is supported by Sather [34]. In this lan-
guage, the definition of a new abstract class may include a super-
typing clause, which defines the new abstract class as the supertype
of one or more existing classes. However, once an abstract class has
been defined, it cannot be used as the supertype in later retroactive
abstraction.

Aspect-oriented programming [23, 22] has been proposed as a tech-
nique for improving the separation of concerns in software. For
example, aspects may add new methods (and fields) to existing
classes without modifying the original definitions of those classes.
To support this capability, aspect-oriented programming requires
access to the source of the entire program to insert the aspects into
the affected classes. Therefore, changing an aspect requires recom-
pilation of all classes extended by this aspect. While Half & Half
does not handle general cross-cutting concerns as well as aspect-
oriented programming, it does accommodate components available
only in compiled form and, thus, meets the requirements of a solu-
tion to the extensibility problem as defined in Section 2.

7. CONCLUSIONS
We have presented Half & Half, a conservative extension of Java
with multimethod dispatch and retroactive abstraction. The com-
bination of multimethods and retroactive abstraction allows many
software design problems, including the expression problem, to be

solved elegantly and simply.

Multimethods in Java have an additional advantage over overload-
ing. According to the Java rules for binary compatibility [21],
clients of a class do not have to be recompiled when adding a
method to the class. With overloading, a certain method signature
was selected when compiling a method call in the client. If a more
specific method is added later, the client would continue to call the
old method. When recompiling the client, the more specific method
will be chosen. With multimethods, the compiled client does not
have the method descriptor (signature and return type) of the old
method wired in, but the descriptor of the dispatch method. Even
if there is a more specific method, the old dispatch method still
applies.

We have integrated multimethod dispatch with retroactive abstrac-
tion by allowing multimethods to be dispatched on interface types.
We have described a type system restriction that allows multimeth-
ods to be type-checked with only a package-wide type check equiv-
alent to link-time type checking.

We have presented an implementation strategy that is compatible
with the existing Java Byte Code format and with existing Java vir-
tual machines. We are currently implementing Half & Half as a
front end of the Brew compiler.
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