
A Framework for Higher-Order Functions in C++

Konstantin Läufer

Loyola University of Chicago
laufer@math.luc.edu

Abstract
C and C++ allow passing functions as arguments to
other functions in the form of function pointers.
However, since function pointers can refer only to
existing functions declared at global or file scope,
these function arguments cannot capture local envi-
ronments. This leads to the common misconception
that C and C++ do not support function closures.

In fact, function closures can be modeled directly
in C++ by enclosing a function inside an object such
that the local environment is captured by data
members of the object. This idiom is described in
advanced C++ texts and is used, for example, to im-
plement callbacks.

The purpose of this paper is twofold: First, we
demonstrate how this idiom can be generalized to a
type-safe framework of C++ class templates for
higher-order functions that support composition
and partial application. Second, we explore the ex-
pressiveness of the framework and compare it with
that of existing functional programming languages.

We illustrate by means of various examples that
object-oriented and functional idioms can coexist
productively and can be used to enhance the func-
tionality of common classes, for example, of nonlin-
ear collections such as trees. A C++ implementation
of the framework is available on request.

1 Introduction
The programming languages C [HS87] and C++
[ES90] allow passing functions as arguments to oth-
er functions in the form of function pointers. How-
ever, since function pointers can refer only to exist-
ing functions declared at global or file scope, these
function arguments cannot capture local environ-
ments. This leads to the common misconception
that C and C++ do not support function closures.

On the contrary, function closures can be mod-
eled in C++ by enclosing a function inside an object
such that the local environment or parts thereof are
captured by data members of the object. This is pos-
sible because objects in C++ are essentially higher-
order records, that is, records with fields that can
contain not only values, but also functions [Red95].

The idiom of objects that enclose functions is first
described by Coplien [Cop92], who calls these ob-
jects “functors”, and further developed by Kühne
[Küh95], who calls them “function objects”. In this
paper, we use the term “functoid” for brevity and to
avoid confusion with established meanings of
“functor” in other areas of computer science. The
functoid idiom has been used, for example, in call-
backs and iterators with type-safe interfaces. A re-
lated idiom that focuses on maintaining a binding
between a receiver and a function is called “com-
mand” by Gamma et al. [GHJV93]. Unlike Kühne,
Gamma et al. do not establish a relationship be-
tween the “command” and “iterator” idioms. The
“command” idiom is also known as “action” or
“transaction” and is used in various object-oriented
application frameworks [JF88], including ET++
[WGM88], InterViews [LCI+92], MacApp [App89],
and Unidraw [VL90].

Nevertheless, various existing class libraries pro-
vide internal (passive) iterators with weakly-typed
interfaces and place the responsibility of applying
suitable type casts on the user. For example, Bor-
land C++ [Bor94] uses the following internal itera-
tor in its container class templates.

void Container<Item>::forEach
(void(* f)(Item&, void*), void* args);

The purpose of the second argument of f and the
argument args is to allow passing specific argu-
ments to f . Using the functoid idiom, the iterator
could be provided in the following type-safe way.

void Container<Item>::forEach
(Visitor<Item>& f);

template <class Item> class Visitor
{
public:

virtual void operator()(const Item&)
= 0;

};

By deriving from the class template Visitor , in-
formation can be passed to and from the iterator in
a type-safe manner, where specific arguments are
passed as arguments to the constructor of the visi-
tor. For example, the following visitor adds the ele-
ments of a container of integers.

class Adder : public Visitor<int>

{
public:

Adder(int& s) : sum(s) { }
virtual void operator()

(const int& item)
{ sum += item; }

private:
int& sum;

};

int sum = 0;
Adder add(sum);
container.forEach(add);
cout << sum;

The purpose of this paper is twofold: First, we
demonstrate how the functoid idiom can be gener-
alized to a type-safe framework of C++ class tem-
plates for higher-order functions that support com-
position and partial application. The framework
could be translated to other object-oriented lan-
guages that support inheritance and genericity. Sec-
ond, we explore the expressiveness of the frame-
work and compare it with that of existing function-
al programming languages.

We show informally that there is a simple com-
positional translation from functional programs to
the framework. We illustrate by means of various
examples that object-oriented and functional idi-
oms can coexist productively and can be used to en-
hance the functionality of common classes, for ex-
ample, of nonlinear collections such as trees. To in-
tegrate the framework with C and C++ programs,
we incorporate an existing mechanism to convert
member functions back to nonmember functions. A
C++ implementation of the framework is available
on request.

In the remainder of this paper, Section 2 de-
scribes in detail the requirements, the implementa-
tion, and the structure of the functoid framework.
Section 3 conducts a case study in which a typical
functional program expressed within the frame-
work. Section 4 explains how an existing conver-
sion mechanism from C++ member functions to or-
dinary nonmember functions is incorporated in the
framework. Section 5 concludes with an assess-
ment of this work and a look at related and future
work.

2 Functoids: An Abstraction of
Functions

This section introduces the framework of functoids.
In this framework, a functoid is an abstraction of the
familiar concept “function”.

Requirements
We first establish the requirements of the functoid
abstraction. Our goal is to provide a type-safe ab-
straction, that is, there should be no need for type
casts or untyped pointers at the user level. The ab-
straction should be provided in the form of C++
classes or class templates. We require that the ab-
straction supports the following essential opera-
tions performed on or by functions:

• Application

Functoids can be applied to arguments. When a
functoid is invoked by applying it to one or
more arguments of appropriate types, the func-
toid returns a value of the appropriate result
type.

• Creation

Functoids can be created statically or dynami-
cally. Upon creation, the functoid can capture
and remember parts of the current environ-
ment.

• Composition

Functoids can be composed with one another.
When a functoid f is composed with another
functoid g, the result of the composition is a
new functoid h. When h is applied to an argu-
ment, it first obtains an intermediate result by
applying g to the argument and then returns as
a final result the application of f to the interme-
diate result.

• Partial application

Functoids can be applied partially to fewer ar-
guments than they actually accept. The result
of partial application is a new functoid that ac-
cepts the remaining arguments. The conversion
to a functoid that takes its arguments one at a
time is known as “currying” in functional pro-
gramming terminology.

• Conversion

Functoids are equivalent to ordinary functions.
An ordinary function can be converted to a
functoid, and a functoid can be converted to an
ordinary nonmember function when such a
function is required, for example, as a callback
function for an existing library. Conversion
back to nonmember functions is difficult and
will be addressed in Section 4.

• Extension

Functoids provide extensible functionality. We
can add application-specific operations to a

functoid besides the basic operations described
above.

We implement our abstraction as a class template
Fun that provides the interface to the abstraction
functoid and is parameterized by the types of argu-
ment and result. The creation requirement will be
handled by the constructors of this class, and the
application requirement is captured by a function
call operator of the appropriate type.

Out Fun<In,Out>::operator()(In arg) const;

The question arises how users of the functoid
framework should incorporate their own functoid
classes. The idea is that users derive concrete func-
toid classes from the class Fun , providing their own
implementations of the function call operator. To
make this approach work, the function call operator
would have to be declared as virtual so that dynam-
ic method selection is used, and functoids would al-
ways have to be passed and returned by pointer or
reference [ES90]. On the other hand, memory man-
agement becomes an important issue when objects
are not returned by value [Mey92]. What we want
here is both call-by-value and dynamic method se-
lection.

Fortunately, the envelope/letter idiom [Cop92],
also known as the bridge pattern [GHJV93], gives us
a way out of this dilemma. We apply this idiom to
the framework as follows. We provide a class tem-
plate called Fun to capture the interface of our ab-
straction. This is the envelope class, and functoids
are passed and returned by value as instances of
this class. We also provide an abstract class tem-
plate called FunImpl for implementations of func-
toids. This class is an abstract letter class, and users
of the framework provide their own functoid im-
plementations by deriving from this class. The en-
velope class has a pointer to the letter class, and in-
vocations of the function call operator in an enve-
lope object are simply passed on to the letter object.

We first present the envelope class template Fun
because it comes first conceptually, although it de-
pends on the class template FunImpl . We provide
two constructors, one to create a functoid from an
existing functoid implementation, and a copy con-
structor that makes an explicit copy of the imple-
mentation of the functoid it copies. This is neces-
sary so that no two functoid implementations are
shared and the destructor can safely delete the cor-
responding implementation. Furthermore, we pro-
vide a function call operator that simply passes the
function call on to the implementation, accessible
via the pointer impl .

template <class In, class Out> class Fun
{
public:

Fun(FunImpl<In,Out>* const f)
: impl(f) { }

Fun(const Fun& fun)
: impl(fun.impl->copy()) { }

~Fun() { delete impl; }
Out operator()(In arg) const
{ return (*impl)(arg); }

private:
FunImpl<In,Out>* const impl;

};

We now present the abstract letter class template
FunImpl . It has a virtual destructor so that the ap-
propriate destructor in a concrete subclass is in-
voked when a functoid deletes its implementation.
Furthermore, it provides a member function that
makes a copy of the receiver to support the copy
constructor of the envelope class.

template <class In, class Out>
class FunImpl
{
public:

virtual ~FunImpl() { }
virtual Out operator()(In arg) const
= 0;
virtual FunImpl<In,Out>* copy() const
= 0;

};

Composition
The next issue deals with the composition of func-
toids. In a functional programming language such
as ML [MTH90], a function that composes two
functions can be expressed as follows:

fun compose(f,g) = fn x => f(g(x))

The form “fn x => e ” creates an anonymous
function with argument x and body e. Thus the
composition yields a new function with argument x
and result f(g(x)) . The composition is permitted
only if the result type of g is compatible with the ar-
gument type of f . The new function has the same
argument type as g and the same result type as f .

To avoid excess parameterization of the template
Fun , we provide this functionality as a nonmember
function that returns a functoid composed from the
two functoid arguments. This resulting functoid is
an instance of the class template Compose and
holds the two functoids to be composed; the com-
position itself is carried out in the function call op-
erator of this class. Both the class and the function
templates have three type parameters for the argu-
ment, intermediate, and result types.

template <class In, class Med, class Out>

class Compose : public FunImpl<In,Out>
{
public:

Compose(const Fun<Med,Out>& f,
const Fun<In,Med>& g)

: ffun(f), gfun(g) { }
virtual Out operator()(In arg) const
{ return ffun(gfun(arg)); }
virtual FunImpl<In,Out>* copy() const
{

return new Compose<In,Med,Out>
(ffun, gfun);

}
private:

const Fun<Med,Out> ffun;
const Fun<In,Med> gfun;

};

template <class In, class Med, class Out>
Fun<In,Out> compose(const Fun<Med,Out>& f,

const Fun<In,Med>& g)
{

return Fun<In,Out>
(new Compose<In,Med,Out>(f, g));

}

Conversion from nonmember functions
The next requirement is conversion from an ordi-
nary nonmember function to a functoid. The re-
verse direction is discussed below in Section 4. It is
not hard to create a functoid from a nonmember
function. Such a functoid can be implemented with
a data member that points to the function and a
function call operator that passes its argument on to
the function pointer.

template <class In, class Out> class Global
: public FunImpl<In,Out>

{
public:

typedef Out(* FunPtr)(In);
Global(FunPtr f) : theFun(f) { }
virtual Out operator()(In arg) const
{ return theFun(arg); }
virtual FunImpl<In,Out>* copy() const
{ return new Global<In,Out>(theFun); }

private:
FunPtr theFun;

};

To enable automatic conversion from an ordinary
function to a functoid, we add the following con-
structor to the class template Fun , where FunPtr is
defined as in the class template Global .

Fun<In,Out>::Fun(FunPtr f)
: impl(new Global<In,Out>(f)) { }

Partial application
Another issue is how to deal with functoids that
take more than one argument. In ML, a function

that partially applies a function of two arguments
to the first argument can be written as follows:

fun apply(f,x) = fn y => f(x,y)

The result of the partial application of f to the first
argument x is a new function with a single argu-
ment y and result f applied to x and y. The argu-
ment type of the new function is the type of the sec-
ond argument of f , and its result type is the result
type of f .

In the framework, the class template for func-
toids with multiple arguments would have to be
parameterized by all argument types and the result
type. Therefore the framework has to provide an
envelope and a letter class for each number of argu-
ments that could reasonably arise. If the maximum
number of arguments is exceeded, a solution is to
group several arguments in a single object. Howev-
er, our partial application requirement can be satis-
fied only if the functoid accepts its arguments one-
by-one. A better approach would thus be to auto-
mate the generation of the class templates depend-
ing on the maximum number of arguments desired
in the application. The structure of the framework
is sufficiently systematic to make this a feasible op-
tion.

We now illustrate partial evaluation for func-
toids of two arguments. First comes the abstract let-
ter class Fun2Impl , followed by the corresponding
envelope class Fun2 . These classes differ from
FunImpl and Fun in that they have two function
call operators: one that takes two arguments in-
stead of one, and one that takes a single argument
and returns a new functoid. The second function
call operator provides partial evaluation by apply-
ing the functoid to the first argument only.

template <class In1, class In2, class Out>
class Fun2Impl
{
public:

virtual ~Fun2Impl() { }
virtual Out operator()

(In1 arg1, In2 arg2) const = 0;
virtual Fun2Impl<In1,In2,Out>* copy()
const = 0;

};

template <class In1, class In2, class Out>
class Fun2
{
public:

typedef Out(* Fun2Ptr)(In1, In2);
Fun2(Fun2Impl<In1,In2,Out>* const f)

: impl(f) { }
Fun2(Fun2Ptr f)

: impl(new Global2<In1,In2,Out>(f))
{ }
Fun2(const Fun2<In1,In2,Out>& fun)

: impl(fun.impl->copy()) { }
~Fun2() { delete impl; }
Out operator()(In1 arg1, In2 arg2)
const
{ return (*impl)(arg1, arg2); }
inline Fun<In2,Out> operator()

(In1 arg1) const;
private:

Fun2Impl<In1,In2,Out>* const impl;
};

To complete our implementation of partial evalua-
tion, we must implement the function call operator
that takes only one argument. This operator returns
an instance of the class template Apply21 , which
keeps track of the first argument and the original
functoid. When the function call operator of an in-
stance of Apply21 is invoked with the second argu-
ment, the operator simply applies the original func-
toid to both arguments.

template <class In1, class In2, class Out>
class Apply21 : public FunImpl<In2,Out>
{
public:

Apply21(const Fun2<In1,In2,Out>& fun,
const In1& arg1)

: theFun(fun), theArg(arg1) { }
virtual Out operator()(In2 arg2) const
{ return theFun(theArg, arg2); }
virtual FunImpl<In2,Out>* copy() const
{

return new Apply21<In1,In2,Out>
(theFun, theArg);

}
private:

const Fun2<In1,In2,Out> theFun;
const In1 theArg;

};

template <class In1, class In2, class Out>
inline Fun<In2,Out> Fun2<In1,In2,Out>::
operator()(In1 arg1) const
{

return Fun<In2,Out>
(new Apply21<In1,In2,Out>

(*this, arg1));
}

For additional flexibility in combining partial
evaluation and composition, we also provide par-
tial evaluation without application to any argu-
ments. In ML, such a function is written as follows:

fun curry(f) = fn x => fn y => f(x,y)

This function converts its argument f to a new
function that takes its arguments one after the other
instead of both at the same time.

In the framework, the additional member func-
tion curry1 in class Fun2 converts a functoid of
two arguments to a new functoid of the auxiliary
class Curry1 . The function call operator in the new

functoid takes one argument (the first one) and re-
turns a functoid that takes one argument (the sec-
ond one) by invoking the partial function call oper-
ator in the original functoid on the first argument.

template <class In1, class In2, class Out>
class Curry1

: public FunImpl<In1, Fun<In2,Out> >
{
public:

Curry1(const Fun2<In1,In2,Out>& fun)
: theFun(fun) { }

virtual Fun<In2,Out> operator()
(In1 arg1) const

{ return theFun(arg1); }
virtual FunImpl<In2, Fun<In2,Out> >*
copy() const
{

return new Curry1<In1,In2,Out>
(theFun);

}
private:

const Fun2<In1,In2,Out> theFun;
};

template <class In1, class In2, class Out>
Fun<In1, Fun<In2,Out> >
Fun2<In1,In2,Out>::curry1() const
{

return new Curry1<In1,In2,Out>(*this);
}

Adding methods to functoids
The last requirement addresses the extensibility of
functoids. We will want to add application-specific
member functions to the basic functionality provid-
ed by functoids. This can be done by deriving a
class UserFun from the envelope class Fun and a
class UserImpl from the abstract letter class Fun-
Impl . Similarly to the function call operator, the ad-
ditional member function f is implemented in
UserFun as a wrapper that invokes the real one in
UserImpl . We are facing a minor problem: not
only is the pointer impl to the letter object private
in class Fun , but it also is of class FunImpl , which
does not have the new member function. We solve
this problem by making impl protected in Fun and
casting it to class UserImpl in the member func-
tion f . This cast is safe, since it is hidden from the
user of the class.

The following example of a class Cont for con-
tinuations illustrates this requirement. Besides ap-
plication to a consumer object of some other class
Consumer , a continuation supports the method
done to check whether the continuation has fin-
ished. We therefore make the envelope class Cont a
subclass of Fun and the associated letter class
ContImpl a subclass of FunImpl , each instantiat-

ed with appropriate argument and result types. We
extend the functionality of Fun and FunImpl by
adding the member function done in the subclass-
es. The member function done in class Cont first
casts the pointer impl to class ContImpl and then
invokes the member function done in class Cont-
Impl .

class ContImpl
: public FunImpl<const Consumer&, bool>

{
public:

virtual bool done() const { ... }
};

class Cont
: public Fun<const Consumer&, bool>

{
public:

bool done() const
{ return ((ContImpl*) impl)->done(); }
...

};

The structure of the functoid framework
Since the framework uses the envelope/letter idi-
om, it consists of separate abstraction and imple-
mentation class hierarchies. There are sub-frame-

Figure 1: The functoid framework for zero arguments

Figure 2: The functoid framework for one argument

Fun0

operator()
Fun0Impl

operator()
copy()

Global0

operator()
copy()

UserFun0

UserFun0()
UserImpl0A

operator()
copy()

UserImpl0B

operator()
copy()UserFun0()

impl

Fun

operator()
FunImpl

operator()
copy()

Global

operator()
copy()

Compose

operator()
copy()

ApplyN1

operator()
copy()

UserFun

UserFun()
UserImplA

operator()
copy()

UserImplB

operator()
copy()UserFun()

impl

1 N<()

works for functoids of zero, one, and more argu-
ments. We first describe the case of a single
argument. The framework provides an abstraction
class Fun , which is the class for functoids in user
programs. The framework also provides an abstract
implementation class FunImpl , from which users
derive their own implementations of functoids by
overriding the function call operator. Users of the
framework derive classes UserFun from Fun to
add constructors that instantiate the user-defined
functoid implementation classes UserImplA ,
UserImplB , and so on, derived from FunImpl .
The framework predefines several functoid imple-
mentation classes: Global implements wrappers
around nonmember functions; Compose imple-
ments functoids resulting from composition;
Apply21 , Apply31 , and so on, implement func-
toids resulting from partial application of functoids
with more than one argument such that the result-
ing functoid takes the remaining single argument;
finally, Curry1 implements functoids resulting
from “currying” functoids with more than one ar-
gument with respect to the first argument.

The sub-frameworks for two or more arguments
have a similar structure. In the case of argu-
ments, there is an abstraction class FunK and an ab-
stract implementation class FunKImpl . As in the
case of a single argument, users derive from both
framework classes. Again, there are various pre-
defined functoid implementation classes: GlobalK
implements wrappers around nonmember func-
tions of arguments. For , ApplyNK imple-
ments functoids resulting from partial application

K

K N K>

of a functoid of arguments to arguments.
Since the resulting functoids take the remaining
arguments, the class ApplyNK is a subclass of
FunKImpl . For the class CurryK describes
curried functoids that take arguments one at a
time. The actual currying is carried out by the cor-
responding member function curryK in the class
FunN, where . As function composition is de-
fined only for functions of one argument, we do not
consider it for .

We have not yet addressed the case of functions
of zero arguments. We could treat functions with-
out arguments as functions with one dummy argu-
ment of an enumerated type unit with a single val-
ue, but this approach would cause difficulties when
creating wrappers for global functions with no ar-
guments. We therefore provide a separate, simple
sub-framework for this case consisting of only three
class templates, Fun0 , Fun0Impl , and Global0 ,
whose roles are similar to the corresponding classes
in the other cases. These class templates are param-
eterized only by the result type of the function.

We illustrate the structure of the framework in
the notation used by Gamma et al. [GHJV93], which
is an extension of the OMT (Object Modeling Tech-
nique) notation [R+91]. The framework for zero ar-
guments is shown in Figure 1. The framework for
one argument is shown in Figure 2. The framework
for two or more arguments is shown in Figure 3,
where is the number of arguments. For simplici-
ty, the classes CurryK are not shown.

N N K–
K

K 2≥
K

N K>

K 1≠

K

Figure 3: The functoid framework for two or more arguments

FunK

operator()
FunKImpl

operator()
copy()

GlobalK

operator()
copy()

ApplyNK

operator()
copy()

UserFunK

UserFunK()
UserImplKA

operator()
copy()

UserImplKB

operator()
copy()UserFunK()

impl

1 K N< <()1 K<()

A small example
Now that we have described the framework in de-
tail, it is time to look at an example that illustrates
the various features. Besides composition and par-
tial application, the following example illustrates
conversion from and to nonmember functions; we
present the implementation of conversion to non-
member functions in Section 4. The functoid Add
simply adds two numbers.

int add7(int x) { retur n x + 7; }

int callf(int(* f)(int)) { return f(9); }

class Add : public Fun2Impl<int,int,int>
{
public:

virtual int operator()(int x, int y)
const

{ retur n x + y; }
virtual Fun2Impl<int,int,int>* copy()

const
{ return new Add; }

};

main()
{

// conversion from nonmember function
const Fun<int, int> f(add7);

const Fun2<int,int,int> g(new Add);

cout << add7(3) << endl;
cout << callf(add7) << endl;

// f and add7 are now equivalent
cout << f(3) << endl;
// conversion to nonmember function
cout << callf(f) << endl;

// partial application
cout << g(11)(3) << endl;
// conversion to nonmember function
cout << callf(g(11)) << endl;

// composition and partial application
cout << compose(f,g(11))(5) << endl;

// currying and composition
cout << compose(g.curry1(),f)(11)(5)

<< endl;
}

3 Case Study: The Same-Fringe
Problem

The purpose of this section is threefold. First, it
demonstrates how functional programming styles
can be incorporated directly in C++ programs. Sec-
ond, it serves as a case study that shows the practi-
cal usefulness of our system. Third, it disproves
claims that this style of programming is not sup-
ported by C++ [Bak93].

The same-fringe problem
The fringe of a finite tree is the enumeration of its
leaves in left-to-right order. The same-fringe prob-
lem is the problem of deciding whether two finite
trees have the same fringe. In practice, this problem
occurs when comparing for equality two trees that
store data only in their leaves. A brute-force solu-
tion to this problem would involve generating the
fringe of each tree as a list and then comparing the
two lists for equality. This shortcoming of this solu-
tion is that it goes through considerable work to
construct the entire lists although there might be a
mismatch at the beginning of the lists. We could do
slightly better by constructing the fringe of only one
tree and iterating through the other tree.

A far better solution to the same-fringe problem
is to compare the first leaf of each tree and continue
only if they match. Such a solution could be ex-
pressed in terms of coroutines, which would need
unbounded storage to keep track of the current
path in the tree. These coroutines could be modeled
by external iterators in C++. The drawback of this
approach is that the tree traversal has to be made
explicit instead of implicit and recursive.

A solution in a functional language
In a functional language, this problem could be
solved elegantly in terms of lazy streams [FW76]. A
lazy stream is a recursive data structure that is ei-
ther an empty stream or a data item paired with a
function that evaluates to another stream when in-
voked. This technique allows us to delay the gener-
ation of the entire fringe: we seemingly construct
the fringe like an ordinary list, but the actual con-
struction is performed on demand. In the function-
al language ML [MTH90], a data structure for lazy
streams could be defined as follows. The two cases
are called Nil and Cons in analogy to ordinary lists
in functional languages. In ML, functions without
arguments take a single argument of type unit .

datatype 'a Stream =
Nil

| Cons of 'a * (unit -> 'a Stream)

We first deal with the question of generating the
fringe of a binary tree in form of a lazy stream. A bi-
nary tree is either a leaf containing an item or a
node joining two subtrees together.

datatype 'a Tree =
Leaf of 'a

| Node of 'a Tree * 'a Tree

We now generate the fringe of a tree recursively. If
the tree is a leaf, then the fringe is simply the pair of

the item and a function evaluating to an empty
stream. Otherwise the tree is a node, and the fringe
is the concatenation of the fringes of the subtrees.
We actually concatenate two functions that evalu-
ate to fringes when invoked to delay generating the
entire fringes until requested. ML uses pattern
matching to examine the structure of function argu-
ments. The form “fn () => expr ” is used to create
an anonymous function closure on the fly. The com-
ments identify the three different cases of anony-
mous functions we are creating.

fun fringe (Leaf x) =
Cons(x, fn () => Nil) (* Case 1 *)

| fringe (Node(l,r)) =
concat (fn () => fringe l)

(fn () => fringe r) (* Case 2 *)

The concatenation of the two functions follows. If
the first function evaluates to an empty stream, the
fringe is simply the invocation of the second func-
tion. Otherwise the fringe is the first item of the first
fringe paired with the concatenation of the rest of
the first fringe and the second fringe:

fun conca t f g =
case f () of

Nil => g ()
| Cons(x, h) => (* Case 3 *)

Cons(x, fn () => concat h g)

The next job is to compare two lazy streams for
equality. If both are empty, then they are equal. Oth-
erwise, their first items have to match and the re-
maining streams have to be equal. In all other cases,
the two streams are not equal. The following recur-
sive function captures this notion of equality:

fun eq Nil Nil =
true

| eq (Cons(v1, f1)) (Cons(v2, f2)) =
(v1 = v2) andalso eq (f1 ()) (f2 ())

| eq s1 s2 =
false

Now we are ready to define the samefringe func-
tion for two trees:

fun samefringe t1 t2 =
eq (fringe t1) (fringe t2)

For example, among the following three trees, t1
and t2 have the same fringe, although they do not
have the same shape, whereas t0 has a different
fringe:

val t0 = Node(Node(Leaf 3, Leaf 4),
Node(Leaf 5, Leaf 7))

val t1 = Node(Node(Leaf 3, Leaf 4),
Node(Leaf 5, Leaf 6))

val t2 = Node(Node(Node(Leaf 3, Leaf 4),
Leaf 5),

Leaf 6)

Translating the solution to C++
We show how to translate the ML solution directly
into C++ using the functoid framework. For the
sake of simplicity, we deal only with integer items,
but we could also have used templates for the vari-
ous classes. Assume we are given a tree class with
the following public member functions:

class Tree
{
public:

int label() const;
bool isleaf() const;
const Tree& left() const;
const Tree& right() const;
...

};

Our first task is to express lazy streams in C++.
One approach to representing a recursive data
structure in C++ is as a tagged union, using an enu-
merated tag field to indicate which of the cases an
object belongs to and providing data members for
all components of the data structure. We choose a
better, more object-oriented approach that models
each case of the data structure as a different sub-
class of a class for the data structure itself. To facili-
tate passing streams by value, we again employ the
envelope/letter idiom. The class Stream becomes
the envelope class, and we have an abstract letter
class StreamImpl with concrete subclasses Nil-
Stream and ConsStream for the two cases of the
data structure. We first present the class Stream .

class Stream
{
private:

StreamImpl* theStream;

We need constructors for both cases, a copy con-
structor, and a destructor. The constructors take as
arguments the components of the corresponding
cases of the data structure. We assume a forward
declaration of the class Delay for functions evalu-
ating to streams.

public:
Stream();
Stream(int hd, const Delay& tl);
Stream(const Stream& s)

: theStream(s.theStream->copy()){ }
~Stream() { delete theStream; }

Now we need to design an interface for the stream
class that allows us to distinguish between the two
alternatives and to extract the components in the
second case. The function empty tells us whether a
stream is empty; in the nonempty case, head ex-
tracts the item, and tail extracts the function.

bool empty() const

{ return theStream->empty(); }
int head() const
{ return theStream->head(); }
const Delay& tail() const
{ return theStream->tail(); }
bool operator==(const Stream& s) const;
Stream& operator=(const Stream& s);

};

Although we cannot actually implement the con-
structors, the destructors, and the equality operator
until the class Delay is fully defined, we give their
definitions at this point. The equality operator is a
straightforward translation of the ML function eq
given above.

Stream::Stream()
: theStream(new NilStream) { }

Stream::Stream(int hd, const Delay& tl)
: theStream(new ConsStream(hd, tl)) { }

bool Stream::operator==(const Stream& s)
const

{
if (empty() && s.empty())

return true;
else if (empty() || s.empty())

return false;
else

return head() == s.head() &&
tail()() == s.tail()();

}

Next, we present the abstract letter class
StreamImpl . Its pure virtual member functions
correspond to the member function of class
Stream .

class StreamImpl
{
public:

virtual ~StreamImpl() { }

virtual bool empty() const = 0;
virtual int head() const = 0;
virtual const Delay& tail() const = 0;

virtual StreamImpl* copy() const = 0;
};

We now define the two subclasses corresponding to
the two cases of the data structure. These subclasses
implement the pure virtual member functions de-
fined in class StreamImpl . For brevity, we omit
the copy member function, which simply dupli-
cates the receiver. A NilStream is always empty
and does not have a defined head or tail.

class NilStream : public StreamImpl
{
public:

virtual bool empty() const
{ return true; }
virtual int head() const { abort(); }
virtual const Delay& tail() const
{ abort(); }

};

A ConsStream is never empty. The head and
tail member functions return the corresponding
data members, a number and a function, respec-
tively.

class ConsStream : public StreamImpl
{
public:

ConsStream(int x, const Delay& f)
: hd(x), tl(f) { }

virtual bool empty() const
{ return false; }
virtual int head() const { return hd; }
virtual const Delay& tail() const
{ return tl; }

private:
int hd;
Delay tl;

};

Now we must define the class Delay , which in
turn depends on the stream class. We integrate this
class in the functoid framework. The class Delay is
a subclass of an appropriate instance of the class
template Fun0 , and the implementations of Delay
will be subclasses of instances of the class template
Fun0Impl . The purpose of introducing the class
Delay is to capture the mutual dependency with
the class Stream and to introduce appropriate con-
structors for each implementation of this class that
we want to create. In the ML solution above we
identified three cases of anonymous function clo-
sures that correspond to three implementations of
the class Delay .

class Delay : public Fun0<Stream>
{
public:

Delay();
Delay(const Delay& f, const Delay& g);
Delay(const Tree<int>& t);

};

We are going to implement the three cases as sub-
classes of Fun0Impl . We again omit the copy
member function. Case 1 is a function of the form
“fn () => Nil ” evaluating to an empty stream. It
is represented by the following functoid:

class EmptyDelay : public Fun0Impl<Stream>
{
public:

virtual Stream operator()() const
{ return Stream(); }

};

Case 2 is a function of the form
“fn () => fringe t ” evaluating to the fringe of a
tree. The corresponding functoid FringeDelay
stores the tree t and invokes the function fringe ,

a direct translation of the corresponding ML func-
tion.

Stream fringe(const Tree& t)
{

if (t.isleaf())
return Stream(t.label(), Delay());

else
return concat(Delay(t.left()),

Delay(t.right()));
}

class FringeDelay : public Fun0Impl<Stream>
{
public:

FringeDelay(const Tree& t)
: tree(t) { }

virtual Stream operator()() const
{ return fringe(tree); }

private:
const Tree& tree;

};

Case 3 is a function of the form
“fn () => concat g h ”. The associated functoid
ConcatDelay stores the two functions evaluating
to the streams to be concatenated and invokes the
function concat , again a translation of the corre-
sponding ML function.

Stream concat(const Delay& f,
const Delay& g)

{
Strea m s = f();
if (s.empty()) return g();
else return Stream(s.head(),

Delay(s.tail(), g));
}

class ConcatDelay : public Fun0Impl<Stream>
{
public:

ConcatDelay(const Delay& f,
const Delay& g)

: fdelay(f), gdelay(g) { }
virtual Stream operator()() const
{ return concat(fdelay, gdelay); }

private:
Delay fdelay, gdelay;

};

Finally, we give the implementations of the three
constructors for the class Delay . Each constructor
creates an instance of the corresponding implemen-
tation class of the class Delay .

Delay::Delay()
: Fun0<Stream>(new EmptyDelay)

{ }
Delay::Delay(const Delay& f,

const Delay& g)
: Fun0<Stream>(new CombineDelay(f,g))

{ }
Delay::Delay(const Tree<int>& t)

: Fun<unit,Stream>(new FringeDelay(t))
{ }

We can now determine whether two trees have
the same fringe by generating the corresponding
streams and checking them for equality.

bool samefringe(const Tree& t1,
const Tree& t2)

{ return fringe(t1) == fringe(t2); }

We extend the tree class in two ways. If we define
equality of trees as having the same fringe, we can
add the following equality operator to the class
Tree :

bool Tree::operator==(const Tree& t) const
{ return fringe(*this) == fringe(t); }

Furthermore, we can enhance the class Tree with
an external (active) iterator class that traverses the
fringe of the tree. This class TreeIterator en-
ables us to define more than one iterator on the
same tree.

class TreeIterator
{
public:

TreeIterator(const Tree& t)
: theTree(t) { restart(); }

operator bool() const
{ return ! theFringe.empty(); }
int current() const
{ return theFringe.head(); }
void next()
{

assert(! theFringe.empty());
theFringe = theFringe.tail()();

}
void restart()
{ theFringe = fringe(theTree); }

private:
const Tree& theTree;
Stream theFringe;

};

The next function uses the assignment operator
for the class Stream , which we define using the
copy function.

Stream& Stream::operator=(const Stream& s)
{

if (this != &s)
{

delete theStream;
theStream = s.theStream->copy();

}
return *this;

}

4 Converting Functoids to Ordinary
Functions

The framework presented in Section 2 falls short of
the requirement that functoids be convertible to or-
dinary nonmember functions. This shortcoming

stems from a fundamental difference between
member functions and nonmember functions,
which precludes us from simply using a pointer to
the function call operator of a functoid as an ordi-
nary function.

The heterogeneity problem
The fundamental difference between member func-
tions and nonmember functions was recognized by
Young [You92] and is called the heterogeneity prob-
lem by Dami [Dam94]. Technically, a call to a non-
member function requires a stack pointer to store
the actual arguments and the address of the func-
tion to be called. A member function invocation, on
the other hand, requires a stack pointer to store the
arguments, the address of the member function,
and the address of the receiver. This fundamental
difference in the calling mechanism makes it im-
possible to use a member function where a non-
member function is expected, for example, as a call-
back from an existing class library.

The proposed solutions [Fek91, You92, CL95] re-
quire that the programmer writes a nonmember
function that explicitly invokes the C++ member
function from a specific receiver. This solution is
generally not very good because the programmer
has to write a wrapper for every combination of a
member function and a receiver to be used as a call-
back. More seriously, this solution does not work at
all for the framework because we create functoids
on the fly and thus cannot anticipate what wrap-
pers to provide.

The solution using partial binding
Rescue comes in the form of a solution proposed
and implemented by Dami [Dam94], which ad-
dresses a more general partial binding problem. In
this solution, when we perform a partial binding,
we create a data structure that stores the address of
the function, the arguments, and code to complete
the bindings and invoke the function later. This ap-
proach is compiler- and machine-dependent; it cur-
rently works with the GNU CC compiler [Sta94] on
NeXT and Sparc architectures, but could be ported
to other languages, compilers, or architectures. A
similar mechanism that maps Scheme closure ob-
jects to C functions is described by Rose and Muller
[RM92]. The ObjectKit system for ParcPlace Small-
talk allows passing Smalltalk objects, including clo-
sures, to C functions [RM92, quoting P. Deutsch].

From the programmer’s perspective, Dami’s
mechanism consists of the function curry , whose

arguments are a pointer to the memory where the
data structure should be allocated, the function to
be invoked, the total number of arguments, and the
number of arguments supplied here, and those ar-
guments.

typedef void*(* anyFunc)();

extern anyFunc curry(void* mem, anyFunc f,
int nargs, int cargs, ...);

This mechanism extends to object-oriented lan-
guages in the sense that the receiver of a message is
an (implicit) first argument to the method invoked.
We can thus convert a member function to a non-
member function by partial application to the re-
ceiver this . While the mechanism itself is not
type-safe, we safely hide it inside the framework,
and the user only sees it as a type conversion oper-
ator of functoids back to nonmember functions. We
describe how the mechanism is implemented for
functoids with a single argument; the implementa-
tion for functoids with more arguments is analo-
gous. The class template FunImpl gets an addition-
al member function that performs the conversion of
its function call operator to a nonmember function.

typedef Out(* FunPtr)(In);

virtual FunPtr FunImpl<In,Out>::cfun()
const
{

return FunPtr(curry(0,
anyFunc(this->operator()),

3, 1, this));
}

The class template Fun is extended by a type con-
version operator that invokes cfun on the imple-
mentation of the functoid. To make sure that the
conversion is executed only once, we store the re-
sulting function pointer in an additional data mem-
ber fun of Fun , which the constructors initialize to
the null pointer. The associated data must be deal-
located using the free function when the functoid
is destructed. The new members of Fun are as fol-
lows.

template <class In, class Out> class Fun
{
public:

typedef Out(* FunPtr)(In);
...
~Fun()
{ delete impl; if (fun) free(fun); }
operator FunPtr() const
{

if (fun == NULL)
((Fun<In,Out>*) this)->fun =

impl->cfun(); return fun;
}
...

private:
FunPtr fun;

};

Now our conversion requirement is satisfied both
ways, and functoids and nonmember functions are
indistinguishable to the user. The example at the
end of Section 2 illustrates this feature.

5 Conclusion
We have presented a type-safe generalized frame-
work that supports higher-order functional pro-
gramming styles within C++ programs. The frame-
work is implemented entirely in the form of C++
class templates, except for a compiler- and ma-
chine-dependent mechanism for converting mem-
ber functions to nonmember functions [Dam94].
The framework could be translated to other object-
oriented languages that support both inheritance
and genericity.

The main issues in the assessment of our frame-
work are expressiveness and efficiency. To address
the first issue, we compare our framework to exist-
ing functional programming languages.

It is a fundamental limitation of most class-based
object-oriented languages that each distinct behav-
ior must be given a class name [Ros95a]. Conse-
quently, our framework does not provide a mecha-
nism for creating anonymous function closures on
the fly. This is in contrast to functional languages, in
which anonymous closures are routinely passed to
and returned from functions. Rose [Ros95b] de-
scribes an extension of C++ with parameterless
anonymous functions called thunks; a thunk can be
converted to a parameterized function by specify-
ing which variables used in the body of the thunk
are to be treated as parameters.

Another limitation of the functoid idiom in gen-
eral, not just of the functoid framework, is that the
programmer must establish and maintain an ex-
plicit correspondence between variables used in the
body of the closure and instance variables of the
functoid. By contrast, functional and other lan-
guages with block structure and nested functions,
such as Algol or Pascal, automatically capture all
local variables that are used in the closure. Breuel
[Bre88] solves this shortcoming in C and C++ by al-
lowing functions to be nested. Thunks [Ros95b]
provide a solution as well.

Another drawback of the functoid framework
stems from the way type information is required in
instantiations of C++ class templates. While the ex-
amples presented in this paper do not require
lengthy type parameters, the type information re-

quired in more complex applications of the frame-
work is likely to get out of hand, especially when
higher numbers of arguments are involved. Dami
[Dam95] suggests extending the compiler to keep
track of the required type parameters automatical-
ly.

There are several sources of inefficiency in the
framework as compared to typical implementa-
tions of functional languages. First, we use call-by-
value to facilitate memory management. This ap-
proach requires a considerable amount of copying,
depending on the size of the functoid implementa-
tions involved. The problem could be addressed by
improving the memory management strategy, for
example, by using garbage collection for functoids.
Memory management could still be hidden from
the user by overloading the new and delete oper-
ators for functoids. Second, the structure of the
framework requires a virtual function call operator
that is overridden in the user classes to allow dy-
namic selection of the appropriate functoid imple-
mentation. This problem is inherent in the design of
the framework and has no simple solution. Third,
unlike in functional languages, function closures
are controlled by the programmer instead of the
compiler. This precludes the sort of optimizations a
compiler of a functional language would apply.

Other approaches that combine functional lan-
guages and C++ include an interpreter accessible
within C++ [Kla93] and an interpreter written in
C++ [RK88]. A detailed comparison with our work
would go beyond the scope of this paper. While the
translation outlined informally in Section 3 is not
suitable at present as an efficient implementation of
functional languages, the paper demonstrates that
the framework provides access to various function-
al idioms within object-oriented languages.

Acknowledgments
Special thanks go to Gerald Baumgartner for his
careful review of the initial version of this paper, to
Laurent Dami for helpful comments and for pro-
viding his Curry code, to Thomas Kühne for stimu-
lating email discussions on this and related materi-
al, and to John Rose for valuable comments and for
sharing his insights on thunks with me.

References
[App89] Apple Computer, Inc., Cupertino, CA.

Macintosh Programmers Workshop Pascal
3.0 Reference, 1989.

[Bak93] H. Baker. Iterators: Signs of weakness in

object-oriented languages. ACM OOPS
Messenger, 4(3):18–25, July 1993.

[Bor94] Borland, Inc. Borland C/C++ 4.0 Reference
Manual, 1994.

[Bre88] T. Breuel. Lexical closures for C++. In
Proc. USENIX C++ Conf., pages 293–304,
Denver, CO, October 1988.

[CL95] M. Cline and G. Lomow. C++ FAQs. Ad-
dison-Wesley, 1995.

[Cop92] J. Coplien. Advanced C++ Programming
Styles and Idioms. Addison-Wesley, 1992.

[Dam94] L. Dami. Software Composition: Towards an
Integration of Functional and Object-Orient-
ed Approaches. PhD thesis, Université de
Genève, April 1994.

[Dam95] L. Dami. Adding closure support to the
C++ compiler. Personal communication,
March 1995.

[ES90] M. Ellis and B. Stroustrup. The Annotated
C++ Reference Manual. Addison-Wesley,
1990.

[Fek91] J. Fekete. WWL, a widget wrapper li-
brary for C++, 1991. Laboratoire de Re-
cherche en Informatique, Orsay.

[FW76] D. Friedman and D. Wise. CONS should
not evaluate its arguments. In
S. Michaelson and R. Milner, editors, Au-
tomata, Languages and Programming, pag-
es 257–284. Edinburgh University Press,
1976.

[GHJV93] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns. Addison-
Wesley, 1993.

[HS87] S. Harbison and G. Steele. C: A Reference
Manual. Prentice-Hall, 2nd edition, 1987.

[JF88] R. Johnson and B. Foote. Designing reus-
able classes. Journal of Object-Oriented
Programming, 1(2):22–35, June 1988.

[Kla93] H. Klagges. A functional language inter-
preter integrated into the C++ language
system. Master’s thesis, Balliol College,
University of Oxford, University Com-
puting Laboratory, September 1993.

[Küh95] T. Kühne. Inheritance versus parameter-
ization. In Christine Mingins and Ber-
trand Meyer, editors, Proc. Technology of
Object-Oriented Languages and Systems
(TOOLS Pacific ‘94), pages 235–245, Pren-
tice Hall International, Inc., London,

1995. Prentice-Hall. For correct version
ask author; proceedings contain corrupt-
ed version.

[LCI+92] M. Linton, P. Calder, J. Interrante,
S. Tang, and J. Vlissides. InterViews 3.1
Reference Manual. CSL, Stanford Univer-
sity, 1992.

[Mey92] S. Meyers. Effective C++. Addison-Wes-
ley, 1992.

[MTH90] R. Milner, M. Tofte, and R. Harper. The
Definition of Standard ML. MIT Press,
1990.

[Red95] U. Reddy. The design of Core C++. Un-
published draft, March 1995.

[RK88] V. Russo and S. Kaplan. A C++ interpret-
er for Scheme. In Proc. USENIX C++
Conf., pages 95–108, Denver, CO, October
1988.

[RM92] J. Rose and H. Muller. Integrating the
Scheme and C languages. In Proc. ACM
Conf. Lisp and Functional Programming,
pages 247–259, San Francisco, 1992.

[Ros95a] J. Rose. C closures. Personal communica-
tion, April 1995.

[Ros95b] J. Rose. Functional programming and
call-by-name in C++. Personal communi-
cation, April 1995.

[R+91] J. Rumbaugh et al. Object-Oriented Model-
ing and Design. Prentice-Hall, 1991.

[Sta94] R. Stallman. Using and Porting GNU CC.
Free Software Foundation, Cambridge,
Massachusetts, September 1994. Avail-
able as part of the GCC-2.6.3 distribution.

[VL90] J. Vlissides and M. Linton. Unidraw: A
framework for building domain-specific
graphical editors. ACM Transactions on
Information Systems, 8(3):237–268, July
1990.

[WGM88] A. Weinand, E. Gamma, and R. Marty.
ET++ — An object-oriented application
framework in C++. In Proc. ACM Conf.
Object-Oriented Programming: Systems,
Languages, Applications (OOPSLA), pages
46–57, San Diego, CA, 1988.

[You92] D. Young. Object-Oriented Programming
with C++ and OSF/Motif. Prentice-Hall,
1992.

