
Putting Type Annotations to Work

Martin Odersky

Department of Computer Science

University of Karlsruhe

76128 Karlsruhe, Germany

odersky@ira.uka.de

Konstantin Läufer

Department of Mathematical Sciences

Loyola University Chicago

Chicago, Illinois 60626, USA

laufer@math.luc.edu

Abstract

We study an extension of the Hindley/Milner system
with explicit type scheme annotations and type decla-
rations. The system can express polymorphic function
arguments, user-de�ned data types with abstract com-
ponents, and structure types with polymorphic �elds.
More generally, all programs of the polymorphic lambda
calculus can be encoded by a translation between typ-
ing derivations. We show that type reconstruction in
this system can be reduced to the decidable problem of
�rst-order uni�cation under a mixed pre�x.

1 Introduction

Two of the most important cornerstones of type theory
for programming languages are the Hindley/Milner sys-
tem and the second-order polymorphic �-calculus. This
paper tries to explore some of the design space between
them.

The Hindley/Milner system [Mil78] extends the
simply-typed �-calculus with polymorphic let-bound
identi�ers. It thus adds considerable expressive power
yet retains the property that no type annotations in
programs are needed, since most general types can be
inferred [DM82]. This property has made the Hind-
ley/Milner system very appealing as a basis of type
systems for programming languages.

By contrast, the second-order polymorphic �-
calculus F2 [Gir71, Rey74] allows polymorphic types
everywhere, but requires explicit annotations of both
argument types and type instantiations. The general
problem of typechecking without type annotations is
undecidable [Wel94], but there have been several ap-
proaches towards type reconstruction where some type
information is given. These generally fall into two cat-

egories. Curry-style reconstruction �lls in polymorphic
abstractions and applications together with type an-
notations. This style of reconstruction is complicated
by the lack of principal types in F2. The proposed
schemes all have rather complex inference rules with
cumbersome conversions between declared and inferred
types [McC84, OG89]. By contrast, Church-style re-
construction requires the position of type abstractions
and applications to be indicated in the original source.
This style of reconstruction (also called partial type
reconstruction [Boe89]) was shown to be reducible to
higher-order uni�cation [Pfe88]. Even though Church-
style reconstruction is thus undecidable in general, this
result opens up the possibility for semi-decision proce-
dures that work well in practice. On the other hand,
the position of a polymorphic application has to be in-
dicated explicitly in the source, which leads to a rather
unfamiliar coding style, at least for programmers used
to the Hindley/Milner system.

Recently there have been several approaches towards
extending the Hindley/Milner system with some form
of embedded quanti�ers without going all the way to
the polymorphic �-calculus. For instance, Launch-
bury and Peyton Jones have presented an elegant
type system for syntactic control of interference [LPar]
that uses second-order universal quanti�cation. Perry
[Per90] and Läufer and Odersky [LO94] have studied
existential quanti�cation in algebraic datatypes, which
yields a Hindley/Milner style version of Mitchell and
Plotkin's abstract types [MP88]. This style of existen-
tial quanti�cation has been implemented in compilers
for Hope [Per90], Haskell [Aug94] and CAML [MP93].
Rémy [Rém94] has extended Läufer and Odersky's sys-
tem with universal quanti�cation in datatypes, so that
objects with polymorphic methods can be expressed.
Jones [Jon95] has investigated record types with poly-
morphic elements as a way to capture essential aspects
of module systems. A proposal along these lines has
been accepted for inclusion in Haskell 1.3.

It seems that a combination of all of the above sys-
tems, while feasible, would be rather unwieldy. Fortu-
nately, it turns out that it is good enough to consider as

a generalization a far simpler type system that captures
the extensions' commonalities and expresses their dif-
ferences via encodings. The extensions all have in com-
mon that some form of explicit type information is re-
quired. For instance, Läufer and Odersky's and Rémy's
systems restrict existential quanti�cation to the com-
ponents of explicitly declared datatypes, while Jones
restricts universal quanti�cation to �elds of explicitly
declared record types.

Here we study a type system that allows (but does
not require) explicit type scheme annotations for func-
tion arguments. The idea is that a formal function pa-
rameter is polymorphic only if annotated with a type
scheme; otherwise the parameter is monomorphic, i.e. it
has a type, not a type scheme. As an important special
case we admit a rudimentary form of user-de�ned data
type declaration that introduces a value constructor
with a single, possibly polymorphic argument. Finally,
we also allow type scheme annotations for expressions.

Note that this is roughly the kind of type annota-
tions that most programming languages o�er or require.
The crucial extension of this paper is that annotations
and declarations can refer to polymorphic type schemes
instead of just types. The rami�cations of this simple
idea are quite substantial.

� We can express polymorphic function arguments
by annotating the argument with a type scheme.

� We can express data types and record types by
their usual Church encodings in a type-correct
way.

� By slightly modifying these Church encodings, we
can also express existentially or universally quan-
ti�ed component types of records and data types,
thereby subsuming the type systems of Perry,
Läufer and Odersky, Rémy, and Jones. The en-
codings give us principal type properties and type
inference algorithms for these systems �for free�.

� Unlike the situation in the simply typed �-calculus
[Mor68] or ML [Mil78], it is no longer possible to
reduce type inference to a simple Herbrand uni-
�cation problem. We need to consider instead
the problem of �nding a most general substitution
that makes one type scheme an instance of an-
other. We show here that this problem is reducible
to the problem of �rst-order uni�cation under a
mixed pre�x [Mil92], which is decidable. Decid-
ability holds because we still admit only types
and not type schemes in the range of substitutions
� otherwise the problem would be equivalent to
semi-uni�cation, which is undecidable [KTU89].

� Unlike the situation in F2, we still maintain a
strati�cation between types and type schemes. A
universally quanti�ed variable can be instantiated

only to types, never to type schemes. We get back
the full power of F2 in an indirect way, by allowing
type schemes as components of explicitly declared
data types. We show that we can encode all of F2
by providing type declarations for all polymorphic
types in a given F2 program. This shows that our
typing discipline provides essentially the same ca-
pabilities as F2, even though the encoding in F2
does not support a formal comparison of expres-
sive power in the sense of Felleisen [Fel90] since it
fails to be compositional.

Our typing discipline is a conservative extension of
the Hindley/Milner system. Every typable program in
that system continues to be typable. This holds also if
type annotations in the style of ML or Haskell are added
to Hindley/Milner. We were able to show principal
type properties and soundness and completeness of type
inference fully analogous to the results stated by Damas
and Milner [DM82]. Since the engineering issues of
ML-like programming languages and type checkers are
by now well understood, we believe that this makes
our system promising as a practical kernel language on
which type-systematic extensions of ML or Haskell can
be based.

The rest of this paper is organized as follows. Sec-
tion 2 presents our type system. Section 3 shows how
previous polymorphic extensions of ML can be em-
bedded in it. Section 4 discusses an encoding of the
polymorphic �-calculus. Section 5 states the most gen-
eral instantiation problem and presents an algorithm to
solve it. Section 6 presents a type inference algorithm.
Section 7 concludes.

2 The Type System

Figure 1 presents the abstract syntax of our kernel lan-
guage, Exp:�. As in the Hindley/Milner system, we
distinguish between types, which cannot contain quan-
ti�cation over type variables, and type schemes, which
can. Compared to Milner's language Exp there are two
extensions that can be considered independently, but
that are most useful in combination. One extension
considers type annotations for formal arguments and
expressions; the other considers type declarations.

Type Scheme Annotations

Type scheme annotations can be applied to formal ar-
guments in �-abstractions �x:�:e and to expressions
e:�. Annotations with types are common in program-
ming languages that build on the Hindley/Milner sys-
tem. For instance,

map = �f: a ! b. �xs: [a]. case xs of ...

declares the argument types of function map in terms of
two type variables a and b. By generalizing over these

Variables x; y; z

Type Constructors T

Expressions e = x j �x:e j e e0 j let x = e in e0 Exp terms

j �x:�:e j e : � annotated terms
j T type injection

j T�1 type projection
j newtype T �1 : : : �n = � in e type declaration

Type variables �; �;

Types � = � j �1 ! �2 j T �1 : : : �n
Type schemes � = � j �1 ! �2 j 8�:�

Figure 1: Abstract syntax.

(�) ` � � �
` �01 � �1 ` �2 � �02
` �1 ! �2 � �01 ! �02

(!)

(8 �)
` [�=�]� � �0

` 8�:� � �0
` � � �0

` � � 8�:�0
(� 62 ftv(�)) (� 8)

Figure 2: Instance rules for type schemes.

(Taut)
�; x : � ` x : �

�; T : � ` T : �

� ` T : � ! T �

� ` T�1 : T � ! �
(Proj)

(Gen)
� ` e : �

� ` e : 8�:�
(� 62 ftv(�))

� ` e : � ` � � �0

� ` e : �0
(Sub)

(Lambda)
�x:x: � ` e : �

�x ` �x:e : � ! �

� ` e : � ! �0 � ` e0 : �

� ` e e0 : �0
(Apply)

(TypedLambda)
�x:x:� ` e : �0

�x ` �x:�:e : � ! �0
� ` e : �

� ` (e : �) : �
(Typed)

(Let)
�x ` e : � �x:x:� ` e0 : �0

�x ` let x = e in e0 : �0
�T ; T : 8�:�! T � ` e : �0

�T ` newtype T � = � in e : �0
(Newtype)

Figure 3: Typing rules.

type variables we then obtain the usual polymorphic
type scheme for map:

map: 8a.8b.(a ! b) ! [a] ! [b].

What is new here is the ability to annotate with type
schemes instead of types. For instance, it is now possi-
ble to write

f (g: 8c.[c] ! Int) = g ["hello"] + g [1,2].

As a consequence, a type scheme may now form part
of a larger type scheme. For instance, f's most general
type scheme would be

(8c.[c] ! Int) ! Int.

We therefore have to give up Hindley/Milner's restric-
tion that quanti�ers may occur only at the outermost
level of a type scheme and have to admit type schemes
such as �1 ! �2.

An immediate consequence is that we have to re�ne
the �generic instance� relation [DM82] if we want to
get principal types for the system with annotations.
Consider the function �x:Int.[]. Two derivable type
schemes for this function are

8a.Int ! [a] and Int ! 8a.[a].

None of these type schemes is a generic instance of the
other. Furthermore, there is no third type scheme that
has both of these type schemes as generic instances.
But using the relation (�) de�ned in Figure 2, we get
Int ! 8a.[a] as the more general of both type schemes.
The relation (�) implements a form of subtyping for
type schemes. Rule (8 �) together with subsumption
is equivalent to the quanti�er elimination rule of the
Hindley/Milner system. Rule (� 8) allows us to re-
quantify a type scheme. Functions over type schemes
are handled by the standard contravariance rule (!).
As usual, we identify type schemes that are instances
of each other.

The relation (�) is a subrelation of Mitchell's con-
tainment relation [Mit90] and hence is validated by all
type inference models. For type schemes that have
quanti�ers only at the outermost level, (�) is the in-
verse of the �generic instance� relation given by Damas
and Milner [DM82]. We changed the direction of (�)
sign to stay in line with Mitchell's containment relation,
which corresponds to the semantic intuition of subtyp-
ing as set inclusion.

(�) has the following useful properties.

Proposition 2.1 Let � and �0 be type schemes and let
� be a substitution. If ` � � �0 then ` �� � ��0.

Proposition 2.2 (�) is transitive.

Proof Sketch: Assume that �1 � �2 and �2 � �3. We
show �1 � �3 by an induction on the sum of the depths
of the proof trees for �1 � �2 and �2 � �3. Proposi-
tion 2.1 is used for the case where the last rule in the
proof of �1 � �2 is an application of rule (� 8). 2

The typing rules, given in Figure 3, largely follow the
Hindley/Milner system. The two main di�erences are
both motivated by the possible occurrence of quanti-
�ers at all levels in a type scheme. First, it is necessary
to consider type schemes instead of types in the con-
clusion of each typing rule, since type schemes cannot
always be reconstructed using generalization at the out-
ermost level. Second, Hindley/Milner's elimination rule
for outermost quanti�ers is replaced by a more general
subsumption rule, which takes into account the instance
relation (�) on type schemes.

Type annotations alone are su�cient for expressing
polymorphic function arguments. But one shortcoming
of this system remains: the resulting second-order poly-
morphic functions cannot be arguments of polymorphic
functions themselves, since this would require an in-
stantiation of a type variable to a type scheme. For
instance, the following code would not be type-correct:

map f [length, const 0].

The problem is that the type variable a in map's type
cannot be instantiated to the type scheme 8c.[c]!Int.
We circumvent this problem by providing a way to
�package� a type scheme in an explicitly declared data
type.

Type Declarations

A type declaration newtype T �1 : : : �n = � in e cor-
responds to a simple form of an algebraic data type
declaration with a single unary constructor. Each type
T �1 : : : �n thus introduced is di�erent from [�i=�i]�.
The type constructor T may be used anywhere, includ-
ing in the type scheme �. We require that every type
constructor is declared at most once in a program (this
is not enforced by the typing rules). We often use the
shorthand � or � for vectors of type variables or types.

A similar declaration in Haskell would be

data T a1 ... an = T elemtype.

We generalize Haskell in that elemtype may be an arbi-
trary type scheme instead of a type.

The Haskell syntax above makes explicit our con-
vention that T doubles up as an injection function that
maps values of the component type to values of type
T � . For every new type constructor T there is also a
projection function T�1, which is an inverse of the in-
jection T . By contrast, projection in Haskell is implicit
in the meaning of case expressions. Instead of Haskell's

case t of T x) e

we would write

let x = T�1 t in e.

With the help of type declarations we can now code our
problematic example as follows.

newtype ListFun = 8c.[c] ! Int
in let f g = let g' = ListFun�1 g

in g' ["hello"] + g' [1,2]

in map f [ListFun length, ListFun (const 0)].

But much more is possible. For once, newtype declara-
tions are su�cient to express data types with general
products and sums by their usual Church encodings,
combined with explicit injection and projection opera-
tions. For instance, the type of pairs with a constructor
mkpair and selectors fst and snd would be coded as fol-
lows.

newtype Pair a b = 8c. (a ! b ! c) ! c
in let mkpair x y = Pair �k.k x y

in let fst p = Pair�1 p �x.�y.x
in let snd p = Pair�1 p �x.�y.y

in ...

Note that the Pair type expands into a type scheme, not
a type. Therefore, we could not apply the same tech-
nique in languages like ML or Haskell, which admit only
types on the right hand sides of data type declarations.

A second example encodes the list type, using the
List type constructor recursively.

newtype List a = 8b.b ! (a ! List a ! b) ! b

in let nil = List �n.�c.n
in let cons x xs = List �n.�c.c x xs

in ...

A case expression like

case xs of f nil) e1 j cons y ys) e2 g

would then be coded as

List�1 xs e1 �y.�ys.e2.

Of course, in an actual programming language we
would assume that product and sum types are de�n-
able directly, without the need for Church encodings.
The existence of the encodings ensures in this case that
the additional language constructs require no essential
additions to the type system � after all, we could
typecheck by encoding �rst and then using our kernel
language. In the next section, we apply this program
to some polymorphic extensions of the Hindley/Milner
system.

3 Extensions

In this section, we show how some previous exten-
sions of Hindley/Milner with embedded quanti�ers can
be expressed in our system. In particular, we deal
with Läufer and Odersky's version of abstract types
[LO94] and with Jones's version of polymorphic struc-
tures [Jon95]. A system equivalent in expressiveness
to Rémy's [Rém94] can then be obtained by combining
both extensions.

Abstract Types

We consider a set of global data type declarations

data D � = k1�1 j : : : j kn�n (1)

Here D is a data type constructor, and k1; : : : ; kn are
value constructors. Conceptually, a data type construc-
tor is a special instance of a type constructor T , whereas
value constructors k form a separate alphabet. As in
[LO94] we adopt the convention that any type variables
in one of the �i that do not appear in � are existentially
quanti�ed. By contrast, in ML or Haskell such type
variables would be disallowed.

Example 3.1 The following declares a type of lists
with heterogeneous elements. Each element consists
of some value and a function that maps this value to
an integer key. The type of the value may vary from
element to element.

data KeyList = KNil

j KCons ((a, a ! Int), KeyList)

A function that �nds the maximal key can then be
written as follows:

maxkey xs = case xs of

f KNil) minint
j KCons ((y, f), ys)) f y `max` maxkey ys g

Slightly modifying our treatment of lists in the last sec-
tion, this program is translated into Exp:� as follows.

newtype KeyList =

8b.b! (8a.((a, a!Int), KeyList) ! b) ! b
in let KNil = KeyList

�n.�c: 8a.((a, a!Int), KeyList) ! b. n
in let KCons x xs = KeyList

�n.�c: 8a.((a, a!Int), KeyList) ! b. c (x, xs)
in let maxkey xs =

KeyList�1xs
minint

�((y, f), ys).f y `max` maxkey ys

Note that the implied existential quanti�er for the type
variable a in the de�nition of KeyList turns into a second
rank universal quanti�er in KeyList's translation.

For the general case we augment our kernel language
Exp:� with value constructors and case expressions.

e ::= : : :

j k

j case e of fk1x1) e1 j : : : j knxn) eng

Let Exp:�+9 be the term-language thus de�ned. Given
a data type declaration (1), let �i = ftv(�i)n� for i =

1; : : : ; n. Then the following typing rules are equivalent
to the treatment in [LO94].

(AbsI) � ` ki : 8�:8�i:�i ! D � (i = 1; : : : ; n)

(AbsE)

� ` e : D � 00

� ` ki : 8�i:� 0i ! D � 00

� ` �xi:ei : 8�i:� 0i ! �

ftv(�) \ �i = ;

(i = 1; : : : ; n)

� ` case e of fk1x1) e1 j : : : j knxn) eng : �

Let `9 be the relation that results from adding these
rules to those in Figure 3. We now give an encoding (9)
of Exp:�+9 in Exp:� that preserves typability. For the
constructors and case expressions that correspond to a
data type declaration (1), we de�ne:

k9i = k̂i (i = 1; : : : ; n)

where each k̂i is a new variable,

case e of fk1x1) e1 j : : : j knxn) eng9

= D�1 e9 (�x1:e91) : : : (�xn:e
9
n):

We extend (9) homomorphically to all other expres-
sions. Finally, we add for every data type declaration
of form (1) the global declarations below, where
 is a
fresh type variable.

newtype D � = 8
:(8�1:�1 !
) ! : : :!
(8�n:�n !
) !

in let k̂i = �x:D (�y1: 8�1:�1 !
: : : : :

�yn: 8�n:�n !
:yix)

(i = 1; : : : ; n)

Then we have:

Proposition 3.2 For all typotheses �, terms e and
type schemes � in Exp:�+9,

� `9 e : � , � ` e9 : �:

Proof: An easy comparison of typing derivations. 2

Polymorphic Structures

An analogous treatment lets us encode structures with
polymorphic �elds in Exp:�. Consider a set of global
structure declarations

struct S � = fl1: �1; : : : ; ln: �ng (2)

Here, S is a type constructor, and l1; : : : ; ln are �eld
labels. To keep the treatment simple, we assume that
every label l occurs in at most one structure type dec-
laration; hence structures do not have scopes of their
own. A more �exible scheme, in which a label could be
part of several structures, would be obtained by adding

overloading to our type system [Jon92, OWW95]. In
symmetry with our treatment of data types, we now
adopt the convention that any type variables in one of
the �i that do not appear in � are universally quanti�ed.

Example 3.3 We de�ne a type for set objects that
contain as a �eld a polymorphic map function.

struct Set a = f elem : a ! Bool,

union : Set a ! Set a,
map : (a ! b) ! Set b g

Note that the type variable b in map's signature does
not appear on the left-hand side of the de�nition, and
hence is considered to be universally quanti�ed. This
structure declaration could be expressed in Exp:� as
follows.

newtype Set a = 8c.8b.((a ! Bool) !
(Set a ! Set a) !
((a ! b) ! Set b) ! c)
! c.

More generally, let the term language Exp:�+8 be
obtained by adding structure expressions and selector
functions to Exp:�.

e ::= : : : j fl1 = e1; : : : ; ln = eng j #l

Given a structure type declaration (2), we add the
following typing rules, where �i = ftv(�i)n� (i =
1; : : : ; n).

(PolyI) � ` #li : 8�:S �! 8�i:�i (i = 1; : : : ; n)

(PolyE)

� ` ei : 8�i:� 0i (i = 1; : : : ; n)

� ` #li : S � 00 ! 8�i:� 0i (i = 1; : : : ; n)

� ` fl1 = e1; : : : ; ln = eng : S � 00

Let `8 be the relation that results from adding these
rules to those in Figure 3. To encode Exp:�+8 in Exp:�,
de�ne for every data type of form (2):

(#li)
8 = l̂i

where each l̂i is a new variable,

fl1 = e1; : : : ; ln = eng8

= S (�k:k e81 : : : e8n)

Extend (8) homomorphically to all other expressions
and add for every declaration (2) the global declarations

newtype S � = 8
:8�1 : : :8�n:(�1 ! : : :! �n !
)!

in let l̂i = �x:S�1 x (�y1: : : : �yn:yi)

Then the following proposition is shown by a compari-
son of typing derivations.

Proposition 3.4 For all typotheses �, terms e and
type schemes � in Exp:�+8,

� `8 e : � , � ` e8 : �:

Discussion. One shortcoming of the presented en-
codings is that the component types of data types and
structures can have only one layer of quanti�ers. The
encodings share this property with the original propos-
als of Läufer and Odersky and Jones, but not with
Rémy's system. A more powerful type system would
admit arbitrary type schemes for the components. This
would present no problems for data types, hence Rémy's
system could be expressed by a straightforward combi-
nation of our encodings for data types and structures.
But an analogous generalization would not work for
structure types, since there the result of a selection
is captured in a type variable, and therefore needs to
have a type without quanti�ers. (Of course, it is pos-
sible to re-quantify at the outermost level after the se-
lection). Data types su�er a di�erent shortcoming �
albeit for a similar reason � in that each branch in a
case-expression needs to have a type without quanti-
�ers.

It is possible to lift both restrictions by considering
product and sum types in the kernel language, with �
ranging over

� ::= � j � ! � j � � � j � + � j 8�:�

Alternatively, one can also work around the restrictions
by inventing intermediate data and structure types for
each level of quanti�cation.

4 Encoding F2

In this section we present a translation of the second
order polymorphic �-calculus F2 into our typing disci-
pline. F2 is given by the typing rules below.

(Taut)
�; x : � `F x : �

(!I)
�; x : � `F M : �0

� `F �x:�:M : � ! �0

(!E)
� `F M : �0 ! � � `F N : �0

� `F M N : �

(8I)
� `F M : �

� `F ��:M : 8�:�
(� 62 ftv(�))

(8E)
� `F M : 8�:�

� `F M [�0] : [�0=�]�

The crucial idea of the translation of F2 into our typ-
ing discipline is that a polymorphic F2 type 8�:� is
mapped to a data type T �1 : : : �n where the type
constructor T is indexed by an n-ary type abstraction
 and (; �1; : : : ; �n) is the �-lifting of �'s translation:

De�nition. The �-lifting of a type � consists of an n-
ary type abstraction and types �1; : : : ; �n such that
 �1 : : : �n = � and �1; : : : ; �n are maximal subterms
of � that do not contain �. We write in this case

lift� � = (; �1; : : : ; �n):

We arrange such that for every translated type (8�:�)�

the translation contains a global type declaration

newtype T �1 : : : �n = 8�:�! �1 : : : �n:

where lift� �
� = (; : : :).

For simplicity, we avoid variable renamings by as-
suming that all type variables in the F2 source are mu-
tually distinct. The encoding of F2 types is then given
by:

�� = �

(�1 ! �2)
� = ��1 ! ��2

(8�:�)� = T �1 : : : �n
where lift� �

� = (; �1; : : : ; �n):

This encoding is stable under substitutions, as is shown
in the following lemma.

Lemma 4.1 For all F2 types �1; �2, type variables �,

([�1=�]�2)
� = [��1=�]�

�
2:

Proof: By induction on the structure of �2. The case
�2 = 8�:�02 relies on the observation that if

lift� � = (; �1; : : : ; �n)

then
lift� �� = (; ��1; : : : ; ��n);

for any substitution � that does not involve �. 2

We extend (�) pointwise to type environments, de�n-
ing

fxi : �ig
� = fxi : �

�
i g:

We now address the encoding of F2 terms. Since this
encoding depends on both a term and its type, which in
turn depends on a type environment, we formulate (�)
as a mapping from F2's typing rules for type judgments
� `F M : � to a di�erent set of typing rules for
type judgments �� `� M� : ��. We will then show
in a second step that each `� rule is valid as a `
derivation in an augmented environment.

Rules (Taut), (!I) and (!E) are mapped by (�)
to identical rules with `� instead of `F . For the
remaining two rules, we de�ne:

(8I)� =

lift� �
� = (; �1; : : : ; �n)

� 62 ftv(��)

�� `� N : ��

�� `� T (�x�:�:N) : T �1 : : : �n

(8E)� =

lift� �
� = (; �1; : : : ; �n)

�� `� N : T �1 : : : �n

�� `� T�1
 N h�0i : [(�0)�=�]��

In rule (8E), the type argument [�] is translated to a
representative h�i, which is a term with type ��. The
mapping h�i from F2 types to representatives is de�ned
below.

h�i = x�
h�1 ! �2i = �x:��1:h�2i
h8�:�i = T (�x�:�:h�i)

where lift� �
� = (; : : :)

De�nition. Given a type scheme �, let

�� = fx� : � j � 2 ftv(�)g:

Analogously for an F2 term M , let

�M = fx� : � j � 2 ftv(M)g:

Finally, for an F2 derivation D with conclusion � `
M : �, let SD be the set of all polymorphic types of
form 8�:� occurring in the environment or type part of
a typing judgment in D. Then the type environment
�D is given by

�D = �M [f T : 8�:(8�:�! �)! T �

j 9(8�:�) 2 SD:lift� � = (; : : :)g:

Informally, �D contains a binding x� : � for every
free variable � in �, and it contains for every poly-
morphic type in the derivation D a corresponding type
constructor T . �D can be produced by a Exp:� con-
text that consists of a series of type declarations of the
form

newtype T �1 : : : �n = 8�:�! �1 : : : �n;

followed by a series of �-abstractions of the form �x� :
�.

Lemma 4.2 �� ` h�i : ��.

Proof: Directly from the de�nition of h�i. 2

The following proposition is shown by a straightfor-
ward induction on `F derivations.

Proposition 4.3 Let D be a typing derivation in F2
with conclusion � `F M : �. Then there exists a
unique term M� and a `� -Proof with structure D�

that concludes with

��;�M `� M� : ��:

It remains to be shown that each D� derivation can be
completed to a valid Exp:� derivation. To show this,
we need a standard property of Exp:�, namely that
type derivations are invariant under weakenings and
additions of hypotheses. This is stated in the following
lemma, which is shown by a straightforward induction
on typing derivations.

Lemma 4.4 If x 62 fv(e) then �; x : �0 ` e : � i�
� ` e : �.

Theorem 4.5 If � `F M : � by an F2 derivation D
then ��;�D ` M� : ��.

Proof: By an induction on the structure of D. If the
last step in the proof is an application of a (Taut) rule,
the result follows immediately. If it is one of (!I) or
(!E), the result follows by a simple inductive step.
Assume now that the proof consists of a derivation D0

of � `F M : �, followed by an application of rule

(8I)
� `F M : �

� `F ��:M : 8�:�
(� 62 ftv(�)):

By the induction hypothesis, ��;�D0 `F M� : ��.
Let �0 = �D0nfx� : �g. Assume �rst that � 2 ftv(M).
Then �D0 contains a binding x� : �. By rule (Lambda),

��;�0 ` �x� : �:M� : �! ��: (3)

On the other hand, if � 62 ftv(M), (3) follows from the
induction hypothesis, rule (Lambda), and Lemma 4.4.
Then by rule (Gen), since � is free in ��;�0,

��;�0 ` �x� : �:M� : 8�:�! ��: (4)

Furthermore, �D contains both �0 and the binding

T : 8�:(8�:�! �)! T �: (5)

It follows by rules (Taut), (Sub) that

��;�D ` T : (8�:�! �)! T � : (6)

It also follows from (4) and Lemma 4.4 that

��;�D ` �x� : �:M� : 8�:�! ��: (7)

Since �� = � by assumption, the case then follows
from (6), (7) and an application of (App).

Assume �nally that the proof D consists of a deriva-
tion D0 of � `F M : �, followed by an application of
rule

(8E)
� `F M : 8�:�

� `F M [�0] : [�0=�]�
:

By the induction hypothesis, ��;�D0 ` M� : (8�:�)�,
where (8�:�)� = T � , for some type constructor T
such that � = �� and D contains the binding

T : 8�:(8�:�! �)! T �: (8)

Then by (Taut), (Proj) and (Sub):

��;�D0 ` T�1
 : T � ! 8�:(�! ��): (9)

By rule (App),

��;�D0 ` T�1
 M� : 8�:(�! ��): (10)

Then by rule (Sub),

��;�D0 ` T�1
 M� : (�0)� ! [(�0)�=�]��: (11)

Since �D � �D0 it follows with Lemma 4.4 that

��;�D ` T�1
 M� : (�0)� ! [(�0)�=�]��: (12)

Furthermore, since �D � ��, Lemma 4.2 with
Lemma 4.4 implies that

��;�D ` h�0i : (�0)�: (13)

Then by (12), (13) and rule (App),

��;�D ` T�1
 M� h�0i : [(�0)�=�]��: (14)

Finally with Lemma 4.1,

��;�D ` T�1
 M� h�0i : ([�0=�]�)�; (15)

which proves the case. 2

Example 4.6 Consider the successor function on
Church-numerals

n̂ = ��:�f : �! �:�x : �:fn x;

which is given by:

succ : (8�:(�! �)! �! �)!
8�:(� ! �) ! � ! �

succ = �m: 8�:(�! �)! �! �:

��:�f : � ! �:�x: �:

m[�] f (f x):

The liftings of succ's argument and result type schemes
with respect to their quanti�ed type variables are:

lift� 8�:(�! �)! �! � = (�! �)! �! �

lift� 8�:(� ! �) ! � ! � = (� ! �) ! � ! �:

We thus need the following global type declarations:

newtype S = 8�:�! (�! �)! �! �

newtype T = 8�:� ! (� ! �)! � ! �:

Translating the successor function results in

succ� = �m:S:T (�x�: �:�f : � ! �:

�x: �:S�1 m x� f (f x)):

Although S and T are identical and a single type dec-
laration would be su�cient, the translation does not
provide this simpli�cation.

It might seem that the F2 translation makes our
previous encodings of abstract types and polymorphic
structures super�uous, since these can clearly be ex-
pressed in F2. However, unlike these previous en-
codings, which had only local transformation rules for
terms, the translation of F2 depends on the full typing
derivation of an F2 program. It is therefore not clear
how to use the translation for validating typing rules for
abstract types and polymorphic structures in Exp:�, as
we did in the last section.

5 Finding Most General
Instantiators

In this section we study the problem of �nding sub-
stitutions that make one type scheme an instance of
another.

Preliminaries: Substitutions and Uni-
�ers. A (type variable) substitution is an idempotent
mapping from type variables to types that maps all but
a �nite number of type variables to themselves. Let
dom(�) = f� j �� 6= �g. Substitutions are extended ho-
momorphically to mappings on types and type schemes.
When applying a substitution � to a type scheme �,
we assume that the bound variables in � are disjoint
from dom(�). This can always be achieved by renam-
ing bound variables in �.

Let 1 be the identity substitution and let [�=�] be
the mapping (idempotent or not) that replaces � by
� . Composition of substitutions � and � is written
� � �. Let V be a set of type variables. Then �jV is
the substitution that equals � on all type variables in
V and that is the identity on all other type variables.
Conversely, �nV is the substitution that equals � except
on V , where it is the identity.

Let U be a �nite set of type variables. Usually we
use U for the universe of type variables that are of

interest in the situation at hand. We de�ne �1 �
�
U �2 if

(� � �1)jU = �2jU . We write �1 �U �2 if 9�:�1 �
�
U �2.

Note that this makes the �more general� substitution
the smaller element in the pre-order �U . This choice,
which reverses the usual convention in treatments of
uni�cation (e.g. [LMM87]), was made to stay in line
with the semantic notion of type instance.

We make �U a partial order by identifying substitu-
tions that are equal up to variable renaming, or equiv-
alently, by de�ning � =U � i� � �U � and � �U �. It
follows from [LMM87][Theorem 7] that �U is a com-
plete lower semi-lattice where least upper bounds, if
they exist, correspond to uni�cations and greatest lower
bounds correspond to anti-uni�cations.

The Instantiation Algorithm. We address
here the following problem.

(Instantiating Substitution). Given type
schemes � and �0, �nd the most general sub-
stitution � = MGI(� � �0) such that
�� � ��0, provided � exists; return failure
otherwise.

This problem can be reduced to the uni�cation un-
der a mixed pre�x problem [Mil92]. Uni�cation under
a mixed pre�x involves �nding a substitution U that
solves a system of equations

Q1�1 : : : Qm�m:s1 = t1 ^ : : :^ sn = tn

(�)I [�=�] `I � � �

[T�=�] `I � � T� (� 62 ftv(�)) [T�=�] `I T� � � (� 62 ftv(�))

� `I �1 ! �2 � �1 ! �2 �1; �2 new � 62 ftv(�1; �2)

(� � [�1 ! �2 =�])nf�1;�2g `I � � �1 ! �2

� `I �1 ! �2 � �1 ! �2 �1; �2 new � 62 ftv(�1; �2)

(� � [�1 ! �2 =�]nf�i;�2g) `I �1 ! �2 � �

(!)I
�1 `I �01 � �1 �2 `I �2 � �02 � = �1 t �2

� `I �1 ! �2 � �01 ! �02

(T)I
�i `I �i � � 0i (i = 1; : : : ; n) � = �1 t : : :t �n

� `I T �1; : : : ; �n � T � 01; : : : ; �
0
n

(8 �)I
� `I [�=�]� � � � new

�nf�g `I 8�:� � �

(� 8)I
� `I � � [T�1 : : :�n=�]�0 T new f�1 : : :�ng = ftv(�; 8�:�0)

� `I � � 8�:�0

Figure 4: Algorithm MGI.

where the Qi are 98-quanti�ers and si and ti are simply-
typed �-terms. We shall be concerned here only with
the simpler problem where si and ti are �rst-order
terms, i.e. types. The domain of the substitution U
are the existentially quanti�ed variables in the pre�x
Q1�1 : : : Qm�m. Let �i be one such variable. Then
U�i can refer to any variable �j with j � i, but not to
any variable bound further to the right than �i.

The reduction of the instantiation problem to a uni-
�cation under a mixed pre�x problem proceeds in three
steps.

Step 1:. Decompose the instantiation problem to a
system of equations with quanti�er pre�xes by applying
the mapping (�) de�ned below.

(8�:� � �)� = 9�:(� � �)� if � 62 ftv(�0)

(� � 8�:�0)� = 8�:(� � �0)� if � 62 ftv(�)
(�1 ! �2 � �01 ! �02)

� = (�01 � �1)� ^ (�2 � �02)
�

(�1 ! �2 � �)� = 9�1; �2:� = �1 ! �2 ^
(�1 � �1)� ^ (�2 � �2)�

where �1; �2 new.
(� � �01 ! �02)

� = 9�1; �2:� = �1 ! �2 ^
(�01 � �1)� ^ (�2 � �02)

�

where �1; �2 new.

(� � � 0)� = � = � 0

The meta-variable � in the �rst clause of this mapping is
assumed to range over type schemes without quanti�ers
at the outermost-level:

� ::= � j �! �0:

Step 2: Bring the resulting system into pre�x form by
applying the equations

E ^ (Q�:E 0) = Q�:(E ^ E 0)
(Q�:E)^ E 0 = Q�:(E ^ E 0)

left-to-right as often as necessary.
Step 3: Let E2(� � �0) be the system resulting from

Step 2. Then a uni�cation under a mixed pre�x prob-
lem E(� � �0) is obtained by existentially quantifying
all free variables in E2.

E(� � �0) = 9ftv(E2):E2

Proposition 5.1 ` �� � ��0 i� � is a solution to the
problem E(� � �0).

A more direct approach, which combines the trans-
formation to a uni�cation under a mixed pre�x and
the solution of this problem in a single algorithm, is
shown in Figure 4. Algorithm, MGI is expressed as an
inference system whose clauses are of the form

� `I � � �0:

Each derivation step takes as inputs two type schemes
� and �0. It yields as output a substitution �. We will
show that � is the most general substitution such that
` �� � ��0 holds.

The most interesting rule of the algorithm is (� 8)I .
This rule has to enforce the side-condition (� 62 ftv(�))
in the corresponding instance rule, (� 8). It does this
by replacing � with a Skolem function T that has as
arguments all other type variables in � and 8�:�0.
This way, any substitution which would violate the
side-condition by instantiating some type variable to
� would lead to failure of an (�)I rule in MGI due to a
circular variable dependence (an �occurs check�).

We now state soundness and completeness of algo-
rithm MGI. The proofs for this and the following the-
orems proceed by standard inductions on derivations.
Proofs are omitted here; they will be given in a forth-
coming technical report [OL95].

Lemma 5.2 (Substitution) If ` � � �0 then ` �� �
��0.

Theorem 5.3 Let �; �0 be type schemes, let � be a
substitution and let U be a �nite set of type variables.

(Soundness) If � `I � � �0 then dom(�) � ftv(�; �0)
and ` �� � ��0.

(Completeness) If ` �� � ��0 then there is a sub-
stitution � �U � such that � `I � � �0.

For type reconstruction we need a slightly di�erent
version of this algorithm that restricts the returned sub-
stitution to be the identity on some given variable set
V . This algorithm is again given in logical form. For
simplicity, we reuse the `I symbol, writing

V; � `I � � �0:

The modi�ed algorithm is obtained from MGI by
skolemizing V , using the rule below.

T1; : : : ; Tn new � = [Ti=�i]i=1; :::; n � `I �� � ��0

f�1; : : : ; �ng ; ��1 � � `I � � �0

Corollary 5.4 Let �; �0 be type schemes, let U and V
be �nite sets of type variables, and let � be a substitu-
tion.

(Soundness) If V ; � `I � � �0 then dom(�) �
ftv(�; �0)nV and ` �� � ��0.

(Completeness) If ` �� � ��0 and �jV = 1 then
there is a substitution � �U � such that V ; � `I

� � �0.

Proof: Direct from Theorem 5.3 and the de�nition of
modi�ed MGI. 2

6 Type Reconstruction

Figure 5 explains the type reconstruction algorithm.
Following [Rém89], it is expressed as an inference sys-
tem, with clauses of the form

V; �� `W e : � and V; �� `G e : �:

Each derivation step takes as input a type variable set
V , a typothesis � and an expression e. It yields as out-
put a substitution � and a type scheme �. Informally,
whenever a clause V; �� `G e : � is derivable, then � is
the identity on V and �� ` e : � holds. Furthermore,
whenever V; �� `W e : � is derivable, then � is the
most general type scheme such that �� ` e : � holds.
This will be made precise in the theorems below.

The purpose of the set of variables V is to prevent
the computed substitution from touching type variables
that occur free in annotations. For instance, given the
function declaration

map = �f: a ! b. �xs: [a]. case xs of ...

the body of map would be typechecked under assump-
tions f: a ! b, xs: [a]. It is not OK to instantiate these
variables when typechecking the body of map. Such an
instantiation is prevented by including a and b in V .

The type reconstruction algorithm uses the auxil-
iary clause `E � � �0, which states that �0 is obtained
from � by instantiating generic type variables. The only
derivation rule for this clause is (8Elim)W . All `W

clauses have a derivation that ends in a (Taut)W and
(Gen)W rule. All other rules in Figure 5 have a `G

conclusion. Informally, this forces a complete general-
ization of the result type scheme after each derivation
step.

The most complex rules in the reconstruction algo-
rithm have to do with function application. Two rules
are needed, depending on whether type reconstruction
for the function part of the application yields a function
type or a type variable. In the �rst case, the rule com-
putes a substitution instance of the result type scheme
of the function. In the second case, a fresh type vari-
able is created to hold the function result type, which
corresponds to what is done in Hindley/Milner type
reconstruction.

Lemma 6.1 (Substitution) If � ` e : � then �� `
e : ��.

Theorem 6.2 Let � be a typothesis, let e be an expres-
sion, let � be a type scheme. Let V � ftv(�) \ ftv(e)
and U be �nite sets of type variables and let � be a
substitution.

(Soundness) If V; �� `W e : � then dom(�) �
ftv(�)n(V [ftv(e; �) and �� ` e : �.

(8Elim)W `E 8�:� � [�=�]� � new

(Taut)W V ; 1 (�; x : �) `W x : �
V ; 1 (�; T : �) `W T : �

(Gen)W
V ; �� `G e : �

V ; � jftv� � `W e : 8ftv(�)nftv(��):�

(Lambda)W
V ; �(�x:x:�) `W e : � � new

V ; ��x `G �x:e : ��! �

V [ftv(�) ; �(�x:x:�) `W e : �0

V ; ��x `G �x:�:e : � ! �0

(Apply)W
V ; �1� `W e : � `E � � �1 ! �2

V ; �2� `W e0 : �0 V ; �3 `I �0 � �1 � = �1 t �2 t �3
V ; �� `G e e0 : ��2

V ; �1� `W e : � `E � � � � new

V ; �2� `W e0 : �0 V ; �3 `I � � �0 ! � � = �1 t �2 t �3
V ; �� `G e e0 : ��

(Typed)W
V [ftv(�) ; �1� `W e : �0 V [ftv(�) ; �2 `I �0 � � � = �1 t �2

V ; �� `G (e : �) : �

(Let)W
V ; �1�x `W e : � V ; �2(�x:x:�) `W e0 : �0 � = �1 t �2

V ; ��x `G let x = e in e0 : ��0

(Proj)W
T : � 2 � `E � � �0 ! T �

V ; 1� `G T�1 : T � ! �0

(Newtype)W
�00 = 8�:�! T � V [ftv(�00) ; �(�T ; T :�

00) `W e : �0

V ; ��T `G newtype T � = � in e : �0

Figure 5: Type reconstruction algorithm.

(Completeness) If �� ` e : � and �jV [ftv(e) = 1

then there is a substitution � ��
0

U � and a type
scheme �0 such that V; �� `W e : �0 and �0�0 � �.

Corollary 6.3 (Principal Types) Let � be a closed ty-
pothesis. If � ` e : � then there is a type scheme
�0 � � such that ;;1� `W e : �0 and � ` e : �0.

7 Conclusion

We have presented a type system that generalizes sev-
eral recent second-order polymorphic extensions of the
Hindley/Milner system. The presented type system
stays �rmly in the tradition of Hindley/Milner in that
all Hindley/Milner programs continue to be typable
with the same types, and the essential theorems carry
over.

To keep the present treatment simple we have kept
the type system fairly small. When applied in a pro-
gramming language, several extensions would be possi-
ble and maybe even desirable. We have already dis-
cussed polymorphic sum and product type schemes.
As another possible extension, it is straightforward to
add polymorphic recursion [Myc84], which is known
to be undecidable in the absence of type declarations
[Hen93, KTU93].

Starting with Hope [BMS80], many programming
languages have supported polymorphic recursion when
explicit declarations are given for polymorphically re-
cursive functions. Nevertheless, we are not aware of
a formal analysis of type reconstruction for these lan-
guages. Our system can be extended to polymorphic
recursion by adding the typing rule below.

(Letrec)
�x; x:� ` e : � �x; x:� ` e0 : �0

� ` letrec x:� = e in e0 : �0

The corresponding clause for the type reconstruction
algorithm is:

(Letrec)W

V [ftv(�) ; �1(�x; x:�) `W e : �00

V [ftv(�) ; �2 `I �00 � �

V [ftv(�) ; �3(�x; x:�) `W e0 : �0

� = �1 t �2 t �3
V ; �� ` letrec x:� = e in e0 : �0

An extension of the soundness and completeness proofs
for type reconstruction is straightforward.

As a more ambitious extension one could combine
our system with subtyping. This is particularly intrigu-
ing since we already have a subsumption rule, albeit for
type schemes, not for types. Moreover, the instance re-
lationship on function type schemes uses the contravari-
ance rule that is standard in subtyping systems. What
is still missing is a de�nition of subtyping for types.

An extension along these lines should yield a system in
which parametric polymorphism is regarded as a spe-
cial form of subtyping, which would lead to a closer
integration of the two typing disciplines.

Acknowledgments

We'd like to thank Mark Jones, Benjamin Pierce, Didier
Rémy and Phil Wadler for stimulating discussions. The
idea of lifting out maximal subterms of polymorphic
types in the F2 encoding is due to Didier Rémy. Thanks
also to Dilip Sequeira for helpful comments on an earlier
version of the paper.

References

[Aug94] L. Augustsson. Haskell B. user's manual version
0.999.7, October 1994. Distributed with the HBC
compiler.

[BMS80] Rod Burstall, David MacQueen, and Donald T.
Sanella. Hope: An experimental applicative lan-
guage. In Conference Record of the 1980 LISP

Conference, pages 136�143, Redwood Estates,
California, August 1980. The LISP Company.

[Boe89] Hans-J. Boehm. Type inference in the presence of
type abstraction. In Proceedings of the SIGPLAN
'89 Conference on Programming Language De-

sign and Implementation, pages 192�206. ACM,
ACM Press, June 1989.

[DM82] Luis Damas and Robin Milner. Principal type
schemes for functional programs. In Proc. 9th
ACM Symposium on Principles of Programming

Languages, January 1982.

[Fel90] Matthias Felleisen. On the expressive power of
programming languages. In Neil D. Jones, ed-
itor, ESOP '90, European Symposium on Pro-
gramming, pages 134�151. Springer-Verlag, 1990.
Lecture Notes in Computer Science 432.

[Gir71] J. Girard. Une extension de l'interpretation
de Gödel a l'analyse, et son application a
l'elimination des coupures dans l'analyse et la
theorie des types. In 2nd Scandinavian Logic

Symp., pages 63�92, 1971.

[Hen93] Fritz Henglein. Type inference with polymorphic
recursion. ACM Transactions on Programming

Languages and Systems, 15(1):253�289, April
1993.

[Jon92] Mark P. Jones. Quali�ed Types: Theory and

Practice. D.phil. thesis, Oxford University,
September 1992.

[Jon95] Mark P. Jones. From Hindley-Milner types to
�rst-class structures. In Proc. Haskell Workshop,
La Jolla, pages 115�136, June 1995. Yale Univer-
sity Research Report YALEU/DCS/RR-1075.

[KTU89] A. Kfoury, J. Tiuryn, and P. Urzyczyn. The
undecidability of the semi-uni�cation problem.
Technical Report BUCS-89-010, Boston Univer-
sity, Oct. 1989. also in Proc. of Symp. on Theory
of Computing, Baltimore, Maryland, May 1990.

[KTU93] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type
reconstruction in the presence of polymorphic
recursion. ACM Transactions on Programming

Languages and Systems, 15(1):290�311, April
1993.

[LMM87] J. Lassez, M. Maher, and K. Marriott. Uni�ca-
tion revisited. In J. Minker, editor, Foundations
of Deductive Databases and Logic Programming.
Morgan Kau�man, 1987.

[LO94] Konstantin Läufer and Martin Odersky. Poly-
morphic type inference and abstract data types.
ACM Transactions on Programming Languages

and Systems, 16(5):1411�1430, September 1994.

[LPar] John Launchbury and Simon Peyton Jones. State
in Haskell. Lisp and Symbolic Computation, to
appear.

[McC84] N. McCracken. The typechecking of programs
with implicit type structure. In Gilles Kahn,
David B. MacQueen, and Gordon D. Plotkin, ed-
itors, Semantics of Data Types, pages 301�315.
Springer-Verlag, June 1984. Lecture Notes in
Computer Science 173.

[Mil78] Robin Milner. A theory of type polymorphism in
programming. Journal of Computer and System

Sciences, 17:348�375, Dec 1978.

[Mil92] Dale Miller. Uni�cation under a mixed pre�x.
Journal of Symbolic Computation, 14:321�358,
1992.

[Mit90] John C. Mitchell. Polymorphic type inference
and containment. In Gérard Huet, editor, Logi-
cal Foundations of Functional Programming, The
UT Year of Programming Series, chapter 8.
Addison-Wesley Publishing Company, Inc., 1990.

[Mor68] J. H. Morris. Lambda-Calculus Models of Pro-
gramming Languages. PhD thesis, Massachusetts
Institute of Technology, 1968. Technical Report
MAC-TR-57.

[MP88] J. Mitchell and G. Plotkin. Abstract types have
existential types. ACM Trans. on Programming

Languages and Systems, 10(3):470�502, 1988.

[MP93] M. Mauny and F. Pottier. An implementation
of Caml-Light with existential types. Technical
report, INRIA, October 1993. Distributed with
the Caml-Light system.

[Myc84] A. Mycroft. Polymorphic type schemes and re-
cursive de�nitions. In Proc. 6th Int. Symposium.

on Programming, LNCS 167, 1984.

[OG89] James William O'Toole and David K. Gi�ord.
Polymorphic type reconstruction. In Proceed-
ings of the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation,
pages 207�217. ACM, ACM Press, June 1989.

[OL95] Martin Odersky and Konstantin Läufer. Type
reconstruction in the presence of type scheme an-
notations. Technical report, University of Karl-
sruhe, 1995. forthcoming.

[OWW95] Martin Odersky, Philip Wadler, and Martin
Wehr. A second look at overloading. In Proc.

ACM Conf. on Functional Programming and
Computer Architecture, pages 135�1469, June
1995.

[Per90] N. Perry. The Implementation of Practical Func-
tional Programming Languages. PhD thesis,
Imperial College of Science, Technology, and
Medicine, University of London, 1990.

[Pfe88] Frank Pfenning. Partial polymorphic type infer-
ence and higher-order uni�cation. In Proceedings

of the 1988 ACM Conference on Lisp and Func-
tional Programming, pages 153�163, July 1988.

[Rém89] Didier Rémy. Typechecking records and variants
in a natural extension of ML. In Proc. 16th ACM
Symposium on Principles of Programming Lan-

guages, 1989.

[Rém94] Didier Rémy. Programming objects with ML-
ART, and extension to ML with abstract and
record types. In Proc. Theoretical Aspects of
Computer Software, pages 321�346, April 1994.
Springer LNCS 789.

[Rey74] John C. Reynolds. Towards a theory of type
structure. In International Programming Sympo-
sium, pages 408�425. Springer-Verlag, 1974. Lec-
ture Notes in Computer Science 19.

[Wel94] J.B. Wells. Typability and type checking in the
second order �-calculus are equivalent and unde-
cidable. In Proc. 9th IEEE Symposium on Logic
in Computer Science, pages 176�185, July 1994.

