Self-Interpretation and Reflection in a
Statically Typed Language

Konstantin Laufer Martin Odersky
Loyola University of Chicago Universitat Karlsruhe
laufer@math.luc.edu odersky@ira.uka.de

September 11, 1993

In Proc. OOPSLA ‘93 Workshop on Reflection and Metalevel Architectures

1 Introduction

Reflection is the ability of a system to perform a computation about itself. This ability typically
includes a way of representing programs as data (“reification”) and of executing representations
of programs (“self-interpretation”). The interpreter is accessible to the interpreted program in the
form of an “eval” function. Reflection is traditionally studied in untyped or dynamically typed
languages such as LISP [4] [2], Smalltalk [3], or the A-calculus [9].

By contrast, we consider self-interpretation and reflection in a statically typed metalanguage
along the lines of [10] and [7]. Since the language is statically typed, the data structure used as a
representation for programs is statically typed as well. Reflection in a statically typed context can
be characterized as follows:

Type-preserving representation: If a representation is well-typed, then the represented pro-

gram is well-typed.

Type-preservation of self-interpretation: A representation of a program of some type is re-
duced to a representation of the result of the program of the same type.

Reuse: Features of the metalanguage, for instance the type checker or garbage collector, are re-
used directly without reprogramming them. A lack of reuse is called redundancy.

Static typing in reflective systems is useful since it precludes breaches of type safety through
self-interpretation; we cannot construct a syntax tree that causes a run-time type error when we
interpret it. This goal is captured by the principle that the interpreted program should be as safe
as the original one.

Page 1 of 7

Laufer and Odersky Self-Interpretation and Reflection in a Statically Typed Language

2 The SK Combinator Calculus

We explore reflexivity in a typed version of the SK combinator calculus [11]. Unlike the equivalent,
more familiar A-calculus, the SK calculus provides a Turing-complete language without variables
or scope rules. This eliminates the need to keep track of variables in an environment. SK combi-
nator expressions are applicative expressions consisting of the combinators S, K, and Y, defined

in Figure 1.
Sfgx = fx(gx) FS:(@a-B-y)-(a-PB)-a-y
Kxy =X FK:a-B-a
Y f = f(Yf) FY:(a>a)-a

Figure 1: SK combinators and their types

An SK expression said to be well-typed if a typing can be derived for it, using the type rules in
Figure 1 and the following rule for function application:

Fe:t -1 Fe:t

APP
fee':t

3 The Metalanguage

We use the lazy functional language Haskell [6] as the metalanguage for the implementation of
our metacircular interpreter. Haskell static typing with parametric polymorphism and systematic
overloading. We briefly describe lazy evaluation and systematic overloading.

Lazy evaluation

In lazy or call-by-need evaluation, expressions are not evaluated until they are actually needed.
This includes actual parameter expressions in function calls. Consequently, we can define a fix-
point combinator within the language.

fix w(a->a ->a
fix h = h (fix h)

The factorial function is the fixpoint of the following functional:

h > (Num a) => (a->a) ->a -> a
hfx=if x==0then 1 else x * f (x - 1)

Thus the expression fix h 4 evaluates to 24.
Systematic overloading

Haskell provides type classes [12] for the systematic overloading of functions and operations. For

Page 2 of 7

Laufer and Odersky Self-Interpretation and Reflection in a Statically Typed Language

example, to overload the multiplication operation, we first declare a class containing the opera-
tion.

class Mult a where
* »a->a->a

We then declare instance types of the type class for which we want to use the overloaded operation.
We must implement the operation for each instance type.

instance Mult Int where (*) = primIntMult
instance Mult Float where (*) = primIntMult
instance Mult Bool where (*) = (&&)

We can now use the overloaded operation in the definition of new functions, for example:

square :: (Mult a) => a -> a
squar e X = X * X

Given this definition, square True evaluates to True , and square 3 evaluates to 9.

data Rep = Zero | Succ | Con d | S| K| Y| Eval | Reif | Refl
| Rep @ Rep

intp " Rep -> Rep

apply . Rep -> Rep

intp (Reif @ x) = Reif @ x

intp (x @) = apply (int px @ intp y)

intp e = e

apply (Succ @ Xx) = Succ @ X

apply (Cond @ Zero @ ¢ @ f) = intp ¢

apply (Cond @ (Succ @ x) @ ¢ @ f) = intp(f @ X)

apply (S @ f @ g @ X =intp(f @ x @ (9 @ X))

apply (K @ x @ vy) =intp x

apply (Y @ f) = intp(f @ (Y @ f))

apply (Eval @ (Reif @ x)) = Reif @ intp x

apply (Refl @ (Reif @ x)) = intp x

apply e = e

Figure 2: Representation and self-interpretation of SK terms

4 Representation and Self-Interpretation

We are now ready to present the data structures for our statically-typed metacircular interpreter,
following the framework given in [9]. The interpreted program is a simple SK combinator expres-
sion, represented by its abstract syntax tree of type Rep, defined in Figure 2. An abstract syntax tree
represents either a basic combinator or the application of one expression to another, as expressed
by the left-associative infix constructor @in the last variant of Rep. In addition to the basic com-

Page 3of 7

Laufer and Odersky Self-Interpretation and Reflection in a Statically Typed Language

binators S, K, and Y, we provide combinators to represent natural numbers. For metacircularity,
we add the combinators Eval , Reif , and Refl , representing applications of the corresponding
metafunctions defined in the next section.

A self-interpreter for the SK calculus is a function that reduces a representation of an expression
e to a representation of an expression e' whenever e can be reduced to ¢' in the SK calculus itself.
The self-interpreter intp for our representation of SK expressions is defined in Figure 2 along
with its auxiliary functions.

There is no guarantee that the syntax trees we build from the value constructors of type Rep
represent well-typed SK expressions. For example, the syntax tree Zero @ Zero can be con-
structed and has type Rep, but does not represent a well-typed SK expression. The next section
describes how this problem is solved.

5 Reflection and Reification

Reflection is the ability to convert data (representations of SK expressions) into programs (SK
expressions themselves). To implement the function reflect , we extend the representation of an
SK expression to contain not only the representation (of type Rep), but also the expression itself
(of some type a). Reflection then simply corresponds to the selection of the second component.
The extended type Exp a is defined in Figure 3.

data Ex p a = Exp Rep a

eval " Exp a -> Exp a
reflect :: Exp a -> a
(&) o Exp (@ -> b) > (Exp a) -> Exp b

eval (Exp e v) = Exp (intp e) v
reflect (Exp e v) = v
(Exp e u) & (Exp fv) = Exp (e @) (uv)
class Reify a where
reify :: a -> Exp a
instance Reify Int where
reify 0 = zero
reify x = succ & reify (x - 1)
instance (Reify a) => Reify (Exp a) where
reify e = reif & e

Figure 3: Extended representation, reflection, and reification of SK terms
Self-interpretation is now handled by the function eval , which callsintp on the first compo-

nent and retains the second component of the extended representation. Lazy evaluation ensures
that the second component is not evaluated until it is extracted by a call to reflect

Page 4 of 7

Laufer and Odersky Self-Interpretation and Reflection in a Statically Typed Language

Reification, the ability to convert programs back to data, is provided only from natural numbers
to representations of natural numbers. Although every program in the metalanguage can be rep-
resented as an SK expression, the reification of functions would require reflective capabilities of
the metalanguage itself. Systematic overloading in Haskell is used to provide a function reify of
the polymorphic type

reify :: (Reify a) => a -> Exp a

although reify is implemented only on natural numbers. Without this mechanism, we could not
represent the metacircular combinator reif in the extended representation with its correct type.

We saw in the previous section that even ill-typed combinator expressions could be repre-
sented within the type Rep. Fortunately, our extended representation Exp allows us to enforce
that only well-typed expressions can be constructed. For each basic combinator, we declare an
extended representation consisting of the corresponding constructor of type Rep and the corre-
sponding A-expression in the metalanguage. Explicit type declarations are not required for the

desired typing of the combinators, but are included for clarity. The representations of the extended
combinators are declared in Figure 4.

zero o Exp Int

succ Exp (Int -> Int)

cond 2 Exp (Int -> a -> (Int -> a) -> a)

s D Exp (@ ->b->c¢)->(@->hb)->a->¢
k T Exp (@ ->b > a)

i o Exp (@ -> a)

y w Exp (@ -> a) -> a)

evl . Exp (Exp a -> Exp a)

reif . (Reify a) => Exp (a -> Exp a)

refl » Exp (Exp a -> a)

zero = Exp Zero O

succ = Exp Succ (+1)

cond = Exp Cond \ x cf ->if x == then ¢ else f (x - 1))
s = Exp S Mgx->1fx (g x)

k = Exp K Xy ->Xx

[=s &k &k

y = Exp Y fix where fix h = h (fix h)

evl = Exp Eval eval

reif = Exp Reif reify

refl = Exp Refl reflect

Figure 4: Types and values of the representations of the basic SK combinators

Well-typed syntax trees can now be constructed from the extended representations of the com-
binators and the infix operation (&) , a wrapper around the constructor (@), or by reifying a nat-

Page 5 of 7

Laufer and Odersky Self-Interpretation and Reflection in a Statically Typed Language

ural number. The subsequent examples demonstrate the functionality of the interpreter. The
representations for plus and fact were obtained by an automated translation of their A-expres-
sions to SK expressions.

eval (plus & (reify 2) & (reify 1))

=> succ & (succ & (succ & zero))

reflect (plus & (reify 2) & (reify 1))
=> 3

eval (refl & (i & (reif & two)))
=> succ & (succ & zero)

reflect (i & fact) 7

=> 5040

reflect ((i & refl) & ((i & reif) & two))

= 2

reflect (reflect (reflect (reif & (reif & (reif & zero)))))
=> zero

zero & zero
=> [65] Cannot unify types: a -> b and Int
=> in (&) zero

6 Conclusion

To our knowledge, we are the first to implement a fully metacircular interpreter for a statically
typed, Turing-complete language. By contrast, the typed interpreter of [5] is based on a “types as
values” assumption and hence relies on some form of dynamic typing. Pfenning and Lee present
[10] an embedding of the types of F, in F5 but stop short of true reflection of a language in itself.

We argued [7] that conventional statically typed object-oriented languages were not sufficient
to guarantee well-typed expression syntax trees and described an alternative metalanguage based
on F-bounded polymorphism [1] and existential quantification [8]. While such a language was not
available at that time, we were now able to use a reasonably wide-spread “stock” functional lan-
guage for our purposes.

We demonstrated that each feature of the metalanguage, lazy evaluation, static typing, and sys-
tematic overloading, plays a crucial role in the implementation of our metacircular interpreter. We
were able to avoid redundancy by relying completely on the type system of the metalanguage.

References

[1] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. Mitchell. F-bounded polymorphism for object-
oriented programming. In Proc. Functional Programming and Computer Architecture, pages
273-280, 1989.

Page 6 of 7

Laufer and Odersky Self-Interpretation and Reflection in a Statically Typed Language

[2] P. Cointe. Metaclasses are first-class: The ObjVlisp model. In Proc. ACM Conf. Object-Oriented
Programming: Systems, Languages, Applications (OOPSLA), pages 156-167, 1987.

[3] B. Foote and R. Johnson. Reflective facilities in Smalltalk-80. In Proc. ACM Conf. Object-Oriented
Programming: Systems, Languages, Applications (OOPSLA), pages 156-167, 1987.

[4] D. Friedman and M. Wand. Reification: Reflection without metaphysics. In Proc. ACM
Symposium on Lisp and Functional Programming, pages 327-336, 1984.

[5] M. Hagiya. Meta-circular interpreter for a strongly typed language. J. Symb. Comp., (8):651-680,
1989.

[6] P. Hudak, S. Peyton-Jones, P. Wadler, et al. Report on the programming language Haskell A
non-strict, purely functional language Version 1.2. ACM SIGPLAN Notices, 27(5), May 1992.

[7] K. Laufer and M. Odersky. Reflection in type systems. In Proc. OOPSLA Workshop on Reflection
and Metalevel Architectures. ACM, October 1991.

[8] J. Mitchell and G. Plotkin. Abstract types have existential type. ACM Trans. on Programming
Languages and Systems, 10(3):470-502, 1988.

[9] R. Muller. On self-interpretation and reflection in lambda-calculus. In Proc. OOPSLA Workshop
on Reflection and Metalevel Architectures. ACM, October 1991.

[10] F. Pfenning and P. Lee. Metacircularity in the polymorphic lambda-calculus. Technical Report
CMU-CS-89-207, CMU, December 1989.

[11] D. Turner. A new implementation technique for applicative languages. Software — Practice
and Experience, 9:31-49, 1979.

[12] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th Annual
ACM Symp. on Principles of Programming Languages, pages 60-76. ACM, January 1989.

Page 7 of 7

