
Konstantin Läufer (presenter) ‣ Loyola U. Chicago
Mark C. Lewis ‣ Trinity U. (San Antonio, TX)

George K. Thiruvathukal ‣ Loyola U. Chicago

Experiences with Scala Across
the College-Level Curriculum

Motivation

• Colleges and universities (we) produce talent.
• Industry (you) “consumes” talent.
• This could be a match made in heaven!
• Where do we stand with respect to Scala talent?
• We’ll share our side of the story.
• Then you’ll get to share yours!

Context: the Higher Ed landscape

• Pre-college: CS for All
– CS Principles AP/CS0 - Python
– CS AP/CS1 - Java

• Community colleges (2y)
• 4y colleges and universities

– Wide spectrum btw. teaching and research
– What can they offer?
– Which are the best match?

Loyola: private not-for-profit, 16,000 students
• Doctoral Universities: Higher Research Activity (“R2”)
• BS and MS in CS, SE, IT, BIOI; BS in Cybersecurity
• Producing about 60 BS and 80 MS per year
Trinity: private non-profit, 2,500 students
• Master's Colleges & Universities: Small Programs
• BS in CS
• Producing 15-30 BS per year
Us: senior faculty with 16-25 years post-PhD experience

Us in the Higher Ed landscape 3

Us in the Higher Ed landscape 2

Does this scale (out)?

Us in the Higher Ed Landscape 1

Using Scala since 2010 across these courses:

• CS1, CS2
• Intermediate OO Development
• Theory (and Practice) of Programming Languages
• Advanced OO Development
• Server Side Software Development
• Web Services Programming
• Independent study/directed research

https://github.com/LoyolaChicagoCode/?q=scala

Portfolio of Scala-based courses 2

https://github.com/LoyolaChicagoCode/?q=scala

Portfolio of Scala-based courses 1

For each course, we will show

• functional and nonfunctional objectives
• role of Scala
• examples
• what worked and what needs improvement
• current status: how regularly offered, using Scala

or not

CS1: Intro Programming for CS/SE Majors 3

Functional objectives

• Solve simple symbolic and numeric problems programmatically

Nonfunctional objectives

• Proficiency in a programming language
• Values, constants, variables, and types
• Branching, iteration, control abstraction (functions)

Role of Scala: like a statically typed scripting language

CS1: Intro Programming for CS/SE Majors 2
for (i <- 1 to 100) {

 if (i % 3 == 0) print("fizz")

 if (i % 5 == 0) print("buzz")

 if (i % 3 != 0 && i % 5 != 0) print(i)

 println()

}

Can also use pattern matching to set up a decision table but

first-year students might find this less clear.

Reflection

+ Scala worked like a statically typed Python without Java’s warts
+ (Lightweight) functions first
+ Unlike Java, supports structural typing, not only nominal
- IO, readInt and readLine now require an import
- Various other complications and lost opportunities

Status

• Loyola: Scala: one-time pilot in fall 2015, Java: active/regular
• Trinity: Scala - active as a regular offering

CS1: Intro Programming for CS/SE Majors 1

CS2: Intro Data Structures

Functional objectives

• (Mostly linear) data structures
• Searching and sorting algorithms
• A bit of parallelism

Nonfunctional objectives

• Using an OO language to provide abstract data types
• Appreciation of performance and speedup on multicore HW

Role of Scala: largely as a better Java, works well after Scala in CS1

Status: Trinity: Scala active, regular offering; Loyola: Java or C++

Intermediate OO Development 3

Functional objectives

• Custom domain models + recursive behaviors
• Interactive/GUI applications

Nonfunctional objectives

• Design and architectural patterns, separation of concerns
• Event-based programming and background activities
• Testing, including event-based/concurrent systems
• Some experience with Android
• Initial exposure to CI/CD

override def start() = { // in ticking clock
 timer = new Timer
 timer.schedule(new TimerTask {
 override def run() = listener.onTick() // fire event
 }, /*initial delay*/ DELAY, /*periodic delay*/ DELAY)
}

private object RUNNING extends StopwatchState { // in state machine
 override def onStartStop() = { actionStop() ; goToState(STOPPED) }
 override def onTick() = { actionInc() ; goToState(RUNNING) }
 override def updateView() = updateUIRuntime()
}

val model: StopwatchModel = new ConcreteStopwatchModelFacade {
 lazy val listener = MainActivity.this // inject Android activity

Intermediate OO Development 2

Intermediate OO Development 1

Reflection

+ Better, more concise Java
+ Very versatile, multi-paradigm
- Steep learning curve for some
- Considerable friction with Android development (ProGuard)

Status - Loyola

• Scala: one-time graduate-level online pilot in fall 2014
• Java: active, five sections per year including summer

Theory (and Practice) of Programming Languages 7

Functional objectives

• Efficient Unix-like stdin-stdout pipes
• Custom domain models + recursive behaviors
• Lexers, parsers, interpreters

Nonfunctional objectives

• Understand the programming language design space
• Build and use increasingly powerful abstractions
• Separation of concerns in software design, e.g.

– structure, content, traversal, processing

Role of Scala

• Thin cake idiom for simple dependency injection
• Algebraic data types
• Higher-order functions
• Higher-kinded types

Theory (and Practice) of Programming Languages 6

Theory (and Practice) of Programming Languages 5

trait TreeBuilder { … } // SUT-abstraction/contract
trait IO { … } // provider
trait Main extends App with IO with TreeBuilder { … } // hybrid
trait FoldTreeBuilder extends TreeBuilder { … } // SUT-provider

object FMain extends Main with FoldTreeBuilder // DI - no body!

abstract class Spec
 extends WordSpec with TreeBuilder { … } // hybrid

class FSpec extends Spec with FoldTreeBuilder // DI - no body!

Theory (and Practice) of Programming Languages 4

// data = structure + content

sealed trait ExprF[A]
case class Constant[A](value: Int) extends ExprF[A]
case class Plus[A](left: A, right: A) extends ExprF[A]

…
object exprFFunctor extends Functor[ExprF] { // scalaz
 def map[A, B](fa: ExprF[A])(f: A => B): ExprF[B] = fa match {
 case Constant(v) => Constant[B](v)
 case Plus(l, r) => Plus(f(l), f(r))
 …
type Expr = Fix[ExprF] // Matryoshka

Theory (and Practice) of Programming Languages 3

Theory (and Practice) of Programming Languages 2

// behavior = traversal + processing

val evaluate: Algebra[ExprF, Int] = { // processing
 case Constant(c) => c
 case Plus(l, r) => l + r
 …

assert { (fixtures.complex1 cata evaluate) == -1 }
// cata (generalized fold provided by Fix[F]): traversal

functor.laws[ExprF]

Theory (and Practice) of Programming Languages 1

Reflection

+ Multi-paradigm lang: imperative, OO, functional, concurrent
+ Powerful value and type abstractions
- Steep learning curve for many
- JVM ignores SIGPIPE => can’t write composable Unix tools

Status - Loyola

• Active, taught in Scala every spring semester since 2013 to
15-25 students (70-80% undergrad)

• U: alternative to Operating Systems, G: elective

Advanced OO Development

Objectives: depends on who teaches it!

• (1) Enterprise computing focus vs.
• (2) Modeling and simulation

Nonfunctional objectives

• (1) Architecture, ORM
• (2) Architecture, concurrency/actors

Role of Scala: (2) powerful abstractions and support for actors

Status - Loyola: in Scala 2x before 2012, then back to Java

Server-Side App Development

object Application extends Controller {
 def guess(value: Long) = Action { implicit request => …
 val model = previousModel.guess(value.toInt)
 if (model.comparison == 0)
 Ok(views.html.right(guessForm, model))
 else
 …

Objectives: multi-tier, human-centric app design/ implementation

Role of Scala: architecture/frameworks, better Java

Loyola: Scala/Play 2x bef. 2012, then back to Java, now suspended*
Trinity: active using Scala and Play *alt. course: full-stack JS

Web Services Programming

class ClickcounterServiceActor
 extends Actor with RedisRepositoryProvider {
 …
 path("increment") {
 post {
 updateIt(_.value + 1, "counter at max, cannot increment")
 …

Objectives: REST API design and implementation

Role of Scala: architecture/libraries, concurrency, scalability

Status - Loyola: Scala/spray 2x before 2012, then back to Java

“it” = scaling out the talent production

Some observations:

• We have trouble finding Scala talent ourselves…
• How many instructors fully understand functional

programming?
• Need to identify “the hook”: for what courses is Scala a/the

compelling choice?
• Can we add Scala support to Processing as an onramp?

How can we make “it” happen? 4

How can we make “it” happen? 3

Can we convince an entire (education) community that Scala is a
compelling choice for each of these areas?

• Full-stack web
• Web front end, preferably isomorphic
• High-scalability server-side
• Mobile
• Systems
• Embedded
• Data analytics

How can we make “it” happen? 2

Can we convince an entire (education) community that Scala is a
compelling choice for each of these areas? Lots of competition!

• Full-stack web: JavaScript, Python, Java, Scala/Scala.js
• Web front end, preferably isomorphic: JavaScript, Elm, Scala.js
• High-scalability server-side: Java, Scala
• Mobile: Java, Kotlin, Swift, JavaScript, C#/Xamarin
• Systems: Go, Rust, Scala native, nim?
• Embedded: Go, Rust, Erlang/Elixir, JavaScript, Scala native?, nim?
• Data analytics: lightweight - Python, R; high-performance - Spark

How can we make “it” happen? 1

To make it scale out, we need a multiplier effect. Some ideas:

• Building out the community
• Working with educators across the whole spectrum

– Scala workshops at CS edu conferences, e.g., ours @ SIGCSE
– ambassador program?
– internships?

• Including the batteries, curate the choices, include exemplars
“C_AN” - Comprehensive _ Archive Network

• Stepping up support for lightweight data analytics (CSV, JSON)
to compete with R, Python

http://bit.ly/lucscalasurvey

Conclusion: We need your input

http://bit.ly/lucscalasurvey

