
Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 1 of 20

An Open Environment for
Common Gateway Interface Programming

Konstantin Läufer

Loyola University of Chicago
laufer@math.luc.edu

To appear in Proc. Tenth Annual Midwest Computer Conference (MCC), Chicago, March 1996



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 2 of 20

Goals

• interactive World Wide Web applications

• visual design of user interface

• support for stateful server-side programming

• using existing technology (HTTP, CGI)

separate



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 3 of 20

Problems

• HTTP is a stateless protocol

• no notion of history

• CGI programming is tedious, low-level, and fragile

• CGI programming and document authoring are mixed up



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 4 of 20

Approach

• applications modeled as finite state machines

• object-oriented framework for FSM-based applications

• application runs on the server as a CGI program

• state simulated and maintained via hidden input fields in HTML forms

• extensions of HTML to relate application and associated documents

• tool and framework support for this HTML extension



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 5 of 20

User’s View of an Interactive Application



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 6 of 20

Application Modeled as a Finite State Machine

Withdraw

BadCardOrPIN GoodBye

Denied

Confirm

Transfer

SelectionWelcome
C/s

D

CC/f

D

D

D

C

C/s

C/f

C/f

C

C/sX

W

T

X

C = Continue
D = Done
X = Cancel

W = Withdraw
T = Transfer

s = success
f = failure

D



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 7 of 20

Architecture of a CGI Program

• same program, different forms (POST) or directly (GET)

• forms have different input fields; want to extract safely

• output generated depends on the input

•entirely different forms

•variable (structured) output in single form

CGI program

HTML form 1

HTML form 2

HTML form 3

POST

GET

HTML output



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 8 of 20

Simulating State

• encode only the name of the current state in a hidden field

HTTP
Server

Auxiliary programs

current state

CGI program

next state

eventsend
form

get
input



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 9 of 20

OOF for FSM-based applications

• class Application

• class State

• class Component

• class Event



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 10 of 20

Specific Goals

• want type-safe, high-level access to input and output

• want to design the output visually (using our favorite HTML authoring tool)

• want automatic insertion of variable output information in the right places

• want abstract views of CGI input and HTML output

• want to ignore any fixed contents of the HTML output document



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 11 of 20

Add-Ons to the Architecture of a CGI Program

CGI program

HTML form 1

HTML form 2

HTML form 3

POST

GET

HTML output

existing ad-hoc
this work:
type-safe high-level access
to input and outputCGI libraries



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 12 of 20

Application Programmer’s View

• CGI input of type string -> string list

(programmer has to convert this to useful types)

• HTML output in the form of an abstract type

•create instance from existing document (parse and look for special output tags)

•create instance from scratch

•query for a list of fields modifiable by the programmer, for existence of a given
field, and for types of fields

•modify value of a given field



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 13 of 20

Document Author’s View

• new HTML tags for output values
(parsed and made accessible to the CGI program)

<OUTPUT NAME="FieldName" TYPE="FieldType">

• needs to know allowed field types

• needs to know how field types are rendered

• other attributes possible



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 14 of 20

How to Connect the Two Views?

Two possible modes of operation:

• parse each HTML output document into a singleton object

•each output field then becomes a member of this object

•provides static typing and fast execution

• create one object from each HTML document at runtime

•look up fields by their names given as strings

•lose static typing

•provides give higher flexibility

•documents are available to the server anyhow



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 15 of 20

System Components

• any HTML authoring tool

•extended to create special output tags where needed

• html2cpp

•parses an HTML document to a C++ class

•output fields are accessible in a type-safe way as class members

• CGI++ class library

•parse CGI input into a usable data structure

•parse an HTML document for output tags on the fly

•builder for assembling HTML documents on the fly
(using Builder and Composite patterns)

•insertion of building blocks into output documents
(considering types specified for the corresponding output fields)



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 16 of 20

Sample Document and Generated Class

...text1...
<OUTPUT NAME="SearchString" TYPE="String">
...text2...
<OUTPUT NAME="ResultList" TYPE="List<String>">
...text3...

class SearchResult {

String _SearchString;
List<String> _ResultList;

void SetSearchString(String arg) { _SearchString = arg; }
void SetResultList(List<String> arg) { _ResultList = arg; }

void Print {
cout << "...text1...";
_SearchString.Print();
cout << "...text2...";
_ResultList.Print();
cout << "...text3...";

}
};



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 17 of 20

Sample Application Program with Output

int main()
{

SearchResult doc;
List<String> results;

// ...
doc.SetSearchString("Toyota");
results.Add("String 1");
results.Add("String 2");

// ...
doc.SetResultList(results);
doc.Print();

}

...
<UL>
<LI> String 1
<LI> String 2
...
</UL>



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 18 of 20

Dynamic Use

// ...
HTMLdoc d1("filename");
if (d1.HasField("SearchString") && d1.HasType("String"))

d1.SetValue("SearchString", "Toyota");
// ...



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 19 of 20

Conclusion

• content (produced by CGI program) separate from
presentation (HTML document)

• CGI programming as easy VB or VC application programming

• language-independent approach

• prototype with target language C++ coming up...



Konstantin Läufer: An Open Environment for Common Gateway Interface Programming Slide 20 of 20

Related Work

• CGI libraries for Perl, Tcl, Python

• C libcgi from EIT

• HtmlWriter C++ class library from CyberCon

• W3Kit for Objective-C from Wisconsin

• MAWL!!!


