
COMBINING TYPE CLASSES AND EXISTENTIAL TYPES

Konstantin Läufer
laufer@math.luc.edu

Department of Mathematical Sciences
Loyola University of Chicago

6525 North Sheridan Road
Chicago, IL 60660, USA

In Proc. Latin American Informatics Conference (PANEL)

ITESM-CEM, Mexico, September 1994

Abstract

This paper demonstrates that the novel combination of type classes and existential types adds sig-
nificant expressive power to a language, requiring only a minor syntactic change. We explore this
combination in the context of higher-order functional languages with static typing, parametric
polymorphism, algebraic data types, and Hindley-Milner type inference. Since we have examined
the underlying type-theoretic issues already, this paper focuses on the practical aspects of our
extension.

We first examine limitations of existing functional and object-oriented languages. We then give
examples to demonstrate how our first-class abstract types with user-defined interfaces address
those limitations. Finally, we give an informal description of the translation from our language to
a target language without type classes.

Our extension equally applies to other languages with similar type systems and is independent
of strictness considerations. It has been implemented in the Chalmers Haskell B. system, and all
examples from this paper have been developed using this system.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifications

— applicative languages; D.3.3 [Programming Languages]: Language Constructs — abstract data

types, modules, packages; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs

— type structure

General Terms: Languages, Theory

Additional Key Words and Phrases: Object-oriented programming, dynamic dispatching, poly-

morphism, type inference, existentially quantified types

1 Introduction

The intent of this paper is to demonstrate that the combination of two independent programming

language constructs, type classes and existential types, adds significant expressive power to a lan-
guage, requiring only a minor syntactic change. We explore this combination in the context of
higher-order functional languages with static typing, parametric polymorphism, algebraic data
types, and Hindley-Milner type inference.

While this paper focuses on the practical consequences of combining type classes with existen-
tial types, we have already treated the underlying type-theoretic issues formally [10, 11]. We have
developed a type system and a type inference algorithm for the resulting language. Furthermore,

we have given a formal semantics by translation to an implicitly-typed second-order λ-calculus
and have shown that the type system is semantically sound.

For the sake of concreteness, our language is presented here as an extension to Haskell [6].
Other languages with similar type systems can be extended analogously. Furthermore, our exten-
sion is independent of strictness considerations. Our proposal has been implemented in the
Chalmers Haskell B. system [1]. Thus all examples from this paper have been developed and
tested using the hbi interpreter and are given in Haskell syntax.

We first examine limitations of existing functional and object-oriented languages. We then
demonstrate how type classes with existential types address those limitations; in particular, we
give examples illustrating how we express

• first-class abstract types with user-defined interfaces,

• heterogeneous aggregates of different implementations of the same abstract type,

• dynamic dispatching of operations with respect to the representation type, and

• separate interface and implementation hierarchies.

Finally, we give an informal description of the translation from our language to a target language
without type classes.

In the remainder of this paper, Section 2 motivates our extension by discussing limitations of
existing functional and object-oriented languages. Section 3 describes how algebraic data types
can be extended with existential quantification over type classes. Section 4 contains a collection of
examples. Section 5 illustrates the implementation of our language. Section 6 concludes with an
outlook on related and future work.

2 Limitations of Functional and Object-Oriented Languages

This section motivates our combination of type classes and existential types by examining short-
comings of existing languages.

Functional languages

A common approach to dealing with heterogeneous lists in statically-typed languages is to intro-
duce an algebraic data type with a separate constructor for each type allowed in the list:

data KEY = IntKey Int | BoolKey Bool | ListKey [Int]

We can now declare values of this type by applying any of the three constructors. An example of
heterogenous list is the following:

hetList = [IntKey 5, ListKey [1,2,3], BoolKey True, IntKey 9]

If we now want to convert each value of the list to an integer, we can do so by first declaring the
following function, using a pattern matching notation:

toInt (IntKey i) = i
toInt (BoolKey b) = if b then 1 else 0
toInt (ListKey l) = length l

The expression map toInt hetList applies toInt to each element in the list and results
in [5,3,1,9].

There are several disadvantages to this approach:

• One has to remember and use a number of different constructors.

• The component types of the algebraic data type are not abstract; consequently, any operation
can be applied to the components as long as it is type-correct.

• Most importantly, algebraic types of this form do not support extension. When a new case is
added to an algebraic type, for example FloatKey Float to the type KEY, every function that
operates on the type KEY has to be changed to include the new case.

We show below how algebraic data types with existential component types simultaneously
cure all three of these drawbacks.

Object-oriented languages

Object-oriented languages have been successful at expressing heterogeneous aggregates via
extensible subtype hierarchies. However, as opposed to statically-typed functional languages,
they either lack type inference or are dynamically-typed. Furthermore, most statically-typed
object-oriented languages suffer from the contravariance rule for record subtyping, which makes
it hard for these languages to model hierarchies of abstract algebraic structures.

To compare our view with the object-oriented approach, we identify several conceptual rela-
tions between classes and their implementations. We contrast the ways these relations are mani-
fest in C++ [21] and in Haskell [6].

• The is-a relation: a class can be derived from one or more superclasses. In C++, this relation
corresponds to public inheritance. In Haskell, it is expressed as a hierarchy of type classes.

• The implements relation: a class interface can have zero or more implementations. In C++, each
class has exactly one implementation. In Haskell, each type class may have arbitrarily many
instance types, and each type may belong to a number of type classes, as long as it also imple-
ments all of their superclasses.

• The reuses relation: an new implementation can be derived from an existing one for the pur-
pose of code reuse. In C++, this relation is expressed by private inheritance. In Haskell, condi-
tional instance declarations can express a limited form of reuse at the implementation level.

Although C++ offers two different kinds of inheritance, public and private, both are expressed
via the same mechanism. Furthermore, multiple implementations in C++ are often modeled by
deriving several classes from an abstract superclass. Other object-oriented languages suffer from

similar problems. A recently proposed solution comes in the form of separate signatures [2]. On
the other hand, Haskell and our language clearly separate the three relationships.

3 Algebraic Data Types with Existential Quantification over Type Classes

This section describes how abstract data types with user-defined interfaces can be provided by
extending the syntax of algebraic data type definitions. While our extension can be applied to any
language based on a polymorphic type system with algebraic data types, explicit type variables,
and type classes, it has been implemented in the Chalmers Haskell B. system [1] and is presented
as an extension to Haskell.

Type classes [9, 22] provide a systematic approach to ad-hoc operator overloading. Each class

declaration introduces a new class name and one or more new overloaded functions .

Each type that supports a group of overloaded functions is declared as an instance of the corre-
sponding class. Algorithmic type inference of principal types in the style of Hindley and Milner
is possible for ML-like languages extended with type classes, such as Haskell [17].

Existential types [16, 3] are a formalization of the concept of an abstract data type, such as the
package in Ada, the cluster in CLU, and the module in Modula2. By stating that a value has the

existentially quantified type , we mean that has type for some fixed, but private

type . Without giving up type inference, abstract data types can be incorporated into statically-

typed functional languages by allowing the component types of algebraic data types to be exis-
tential(ly quantified) [13]. Such abstract data types are first-class in the sense that their instances
are treated like ordinary values.

We combine type classes and existential types as follows: The existentially quantified type vari-
ables in the component types of algebraic data types stand for the hidden representation types of
the abstract data type. By constraining the existentially quantified type variables to belong to cer-
tain type classes, we can require that the representation types support certain operations. It is in

this sense that type classes serve as interfaces of abstract data types [12].
Syntactically, we extend algebraic data type definitions by dropping the restriction that only

C f1 … fn, ,

v

α .∃ τ v τ̃ α⁄[]τ

τ̃

type variables that are bound as formal type parameters may appear in the component types of the

data type. Any free type variable in a data type declaration is considered to be local to and exis-
tentially quantified in the component types of the value constructor in which it appears, and uni-
versally quantified in the type of the value constructor itself. Just as universally quantified type

variables can be constrained by a context of the form , stating that type vari-

able belongs to type class , existentially quantified type variables can be constrained by local

contexts for the value constructors in which they appear. Thus the general form of a data

type declaration is as follows:

data = | |

The types of the value constructors are given as

where are all type variables free in the types except , and is the

largest subset of that constrains only those type variables free in the types . When

a value constructor appears in a pattern , each existentially quantified type variable

in the component types of is replaced by a fresh anonymous type in the types of the bound vari-

ables . These anonymous types satisfy the local context for the constructor ; further-

more, they must not escape the scope of the bound variables .

4 Examples

The following examples illustrate various applications of existential quantification combined
with type classes. All examples were developed and tested using the Chalmers Haskell B. inter-
preter hbi [1]. We assume that all numerals have type Int, except in the last example, where they
have type Float.

Minimum over a heterogeneous list

Consider the following algebraic data type declaration:

data KEY a = Key a (a -> Int)

This declaration introduces a new type constructor KEY with formal type parameter a. The type
of the value constructor Key is universally quantified over a:

Key :: a -> (a -> Int) -> KEY a

By contrast, the declaration

c C1 u1 … Cn un, ,()

ui Ci

c1 … cn, ,

c ⇒[] T u1…uk c1 ⇒[]K1 t11…t1k1
… cn ⇒[]Kn tn1…t1kn

K1 … Kn, ,

Ki :: u1…ukv1…vl.∀ c̃ i ti1 … tiki
T u1…uk()→ → →⇒

v1 … vl, , ti1 … tiki
, , u1 … uki

, , c̃ i

c ci∪ ti1 … tiki
, ,

K K x1…xm

K

x1 … xm, , K

x1 … xm, ,

data KEY = Key a (a -> Int)

introduces a new (parameterless) type KEY and a value constructor Key of type

Key :: a -> (a -> Int) -> KEY

Since all applications of Key have the same result type, KEY, we can construct the following list:

hetList = [Key 5 id,
Key [1,2,3] length,
Key True (\x -> if x then 1 else 0),
Key 9 (+ 1)]

Although hetList has type [KEY], it is actually heterogeneous in the sense that its elements
have different representation types.

We use pattern matching to extract the two components of a value of type KEY. The type vari-
able a in the component type of the constructor Key is existentially quantified. Thus the argument
type of f and the type of x in the following function definition are identical, giving the function
the type KEY -> Int:

whatkey (Key x f) = f x

Since existentially quantified type variables must not escape the scope in which they are intro-
duced, the following function definition is ill-typed:

value (Key x f) = x

The function hetMin finds the minimum of a list of KEYs with respect to the integer value
obtained by applying the function whatkey:

hetMin [x] = x
hetMin (x:xs) = let y = hetMin xs in

if whatkey x < whatkey y then x else y

and the expression whatkey (hetMin hetList) evaluates to 1.
We observe that KEY is an abstract data type whose implementations explicitly bundle together

a value of some type and a method on that type returning an Int. Each element of hetList may
be viewed as a different implementation of the same abstract type. Two implementations of KEY
differ either in representation types, for example the second and third elements, or in methods,
such as the first and last elements of hetList. Given a value of type KEY, we do not know its rep-
resentation type, but it is guaranteed that we can safely apply the second component (the method)
to the first component (the value).

Minimum over a heterogeneous list using type classes

Type classes provide a way of associating methods with a type in such a way that the methods are

implicitly available for any value of this type. For example, the following type class Key specifies
that its instances must implement a method key returning an integer:

class Key a where
key :: a -> Int

Each instance type of Key declares how it implements the method key, for example:

instance Key Int where key = id
instance Key Bool where key = \x -> if x then 1 else 0
instance Key [a] where key = length

We can use the type class Key to define the interface of the abstract data type KEY by constraining
the existentially quantified type variable a to be an instance of the type class Key. This interface is
expressed by the constructor context Key a in the following type declaration:

data KEY = (Key a) => Key a

We can still define heterogeneous lists of KEYs:

hetList = [Key 5, Key [1,2,3], Key True, Key 9]

However, any two implementations of KEY with the same representation type now share the
method implemented in the instance declaration corresponding to this type. Unlike in the explicit
case, the method dictionaries are packed implicitly with the component values. This is reflected
in the translation scheme presented in Section 5 and corresponds to dynamic dispatching in object-
oriented programming language, where a method associated with an object is selected and
applied to the object at run time. Unlike in the example in Section 2, additional implementations
of the type KEY may be added simply by declaring additional instances of the class Key.

A straightforward way to compare different values of type KEY is by mapping them to integer
values using the following function whatkey:

whatkey (Key x) = key x

Instead, we choose to take a much more general approach. We simply declare KEY as an instance
of the equality and ordered classes, thus making a whole collection of predefined functions avail-
able. Only the methods (==) and (<=) need to be implemented here since the class declarations
for Eq and Ord contain default implementations for all their other methods:

instance Eq KEY where
(Key x) == (Key y) = key x == key y

instance Ord KEY where
(Key x) <= (Key y) = key x <= key y

Using the predefined polymorphic minimum function on lists of ordered values, the expression
minimum hetList evaluates to Key True.

Composition of a list of functions

The algebraic data types in the preceding examples have only one constructor. Data types with
several constructors are possible as well; any existentially quantified type variables are local to the

component type of the constructor in which they appear.
The following type describes lists of functions, in which the type of each function would allow

it to be composed with the next. For notational convenience, we declare the first constructor as
right-associative:

infixr ‘FunCons‘

data FunList a b = (a -> c) ‘FunCons‘ (FunList c b) | FunOne(a -> b)

The universally quantified type variables a and b correspond to the argument type of the first and
the result type of the last function, respectively; the existentially quantified type variable c repre-
sents the intermediate types arising during the composition of two functions. We can now con-
struct lists of composable functions, for example:

funOne = FunOne id

funList = (\x -> x * x) ‘FunCons‘
((==) 9) ‘FunCons‘
(\x -> (x, x)) ‘FunCons‘
funOne

We use a recursive function to apply the function resulting from the successive composition to an
argument. Since the recursive call to apply has a different type from the one defined, we enable
polymorphic recursion by giving an explicit type signature [7].

apply :: FunList a b -> a -> b

apply (FunOne f) x = f x
apply (f ‘FunCons‘ fl) x = apply fl (f x)

Evaluation of the expression apply funList 3 then results in (True, True). We can even count
the number of functions in the composition:

numberComposites :: Num c => (FunList a b) -> c

numberComposites (FunOne f) = 1
numberComposites (f ‘FunCons‘ fl) = 1 + numberComposites fl

The expression numberComposites funList evaluates to 4.

Points and color points

The following example demonstrates how object-oriented concepts can be modeled using type
classes and existential quantification. We start out with a two-level class hierarchy of points and

colored points. In object-oriented terminology, this is inheritance at the interface level, used to
establish relationships between the abstract properties of classes.

data Color = Red | Green | Blue deriving Eq

type Pair = (Float, Float)

class Point p where

move :: p -> Pair -> p
pos :: p -> Pair

class (Point p) => ColorPoint p where
color :: p -> Color
paint :: p -> Color -> p

Next, we define two implementations of class Point, one based on cartesian coordinates:

data CartPoint = C Pair

instance Point CartPoint where
move (C(x,y)) (dx,dy) = C(x+dx,y+dy)
pos (C p) = p

and one on polar coordinates:

data PolarPoint = P Pair

instance Point PolarPoint where
move p (dx,dy) = moveTo p (x + dx, y + dy)

where (x,y) = pos p
moveTo p (x,y) = P(sqrt(x*x + y*y), atan2 y x)

pos (P(r,a)) = (r * cos a, r * sin a)

As in the previous examples, we define an abstract data type with type class Point as its inter-
face:

data POINT = (Point p) => Point p

By making type POINT an instance of class Point, we provide dynamic dispatching of the meth-
ods in the interface classes:

instance Point POINT where
move (Point p) q = Point (move p q)
pos (Point p) = pos p

The following instance declaration states that any instance type of type class Point may be
extended by additional fields. Without this general declaration, we would need a specific Point
instance declaration for each ColorPoint instance since Haskell requires that an instance of a
type class must also be an instance of all superclasses of the type class.

instance (Point p) => Point (p,t) where
move (p,z) d = (move p d, z)
pos (p,z) = pos p

The next instance declaration states that any instance of Point extended with a field of type
Color results in an instance of ColorPoint. In object-oriented terminology, this and the previ-

ous instance declaration provide inheritance at the implementation level, for code reuse. Further-
more, we automatically get a colored version of both implementations of Point,
ColorCartPoint and ColorPolarPoint:

instance (Point p) => ColorPoint (p, Color) where
color (p,c) = c
paint (p,c) d = (p,d)

The following list of points contains various combinations of uncolored, colored, cartesian, and
polar points:

pointList = [Point(P(5, 0)), Point(C(3, 4), Blue),
Point(C(2, 7)), Point(P(5, pi / 4), Red)]

We can now evaluate expressions such as

map (\p -> moveBy p (1, 2)) pointList

resulting in

[Point(P(6.32, 0.32)), Point(C(4.00, 6.00), Blue),
Point(C(3.00, 9.00)), Point(P(7.16, 0.89), Red)]

5 Implementation

In this section, we describe how Exell programs are translated to a suitable target language. Our
approach is based on the original compile-time translation scheme by Wadler and Blott [22],
which was further developed by Nipkow and Snelting [18]. The basic idea is to eliminate classes
in favor of run-time method dictionaries that contain instances for particular types of the overloaded
functions associated with a class. An identifier given a polymorphic type scheme in the original
environment is typed as a function in the translated environment; the translated type has dictio-
nary arguments for each class that constrains a type variable in the original type, and the result
type of the function is the same as the original type. The translation is type-preserving in the sense
that a well-typed Exell program translates to a well-typed target program. For type-theoretic

reasons [11], the target language must be an explicitly- or implicitly-typed second-order λ-calcu-
lus. For illustrative purposes, we translate into an implicitly-typed calculus with a Haskell-like
syntax.

We explain the translation by stepping through the second example in Section 4. We declare a
new type for each class declaration to represent the corresponding method dictionaries. In this
case, we introduce the type constructor KeyD corresponding to the class Key. All dictionaries for
this class are created using the value constructor KeyDict.

data KeyD a = KeyDict (a -> Int)

The function ky selects from a method dictionary of type KeyD the (only) method it contains:

ky (KeyDict k) = k

Each instance declaration of the class Key translates to the declaration of a method dictionary of
type KeyD. Corresponding to the instance Key Int, we declare a dictionary of type KeyD Int, and
so forth:

keyDInt = KeyDict id
keyDBool = KeyDict (\x -> if x then 1 else 0)
keyDIntList = KeyDict length

An application of the function key to a value translates to an expression selecting the only method
from a dictionary of type KeyD and applying that method to the value. For example, the expres-
sion key [1,2,3] translates to (ky KeyDIntList) [1,2,3] and evaluates to 3.

Existentially quantified type variables can occur in the component types of algebraic data
types. Furthermore, each existentially quantified type variable may be constrained by one or more
type classes. The functions required by these type classes are implicitly bundled with the compo-
nent values and are available when the component values are accessed. This bundling is made
explicit in the translation: each type variable that is constrained by one or more type classes
requires including one or more dictionaries in the component type of the algebraic data type. In
our example, the type variable a is an instance of the class Key; hence the translated data type
KEY’ contains a dictionary of type KeyD a in addition to the value of type a:

data KEY’ = Key’ (KeyD a) a

Each application of the original value constructor Key is translated to an application of the new
constructor Key’ , where an appropriate method dictionary is supplied as an argument:

hetList’ = [Key’ keyDInt 5, Key’ keyDIntList [1,2,3],
Key’ keyDBool True, Key’ keyDInt 9]

When a value of type KEY is decomposed, two components are available: a value of some type t
and a suitable dictionary of type KeyD t containing a function that can be selected and applied to
the value. This can be seen in the translated whatkey function:

whatkey’ (Key’ keyDa x) = (ky keyDa) x

It is not surprising that our translation of the second example in Section 4 almost exactly results
in the first example, where a method was provided explicitly as a component of the data type.

6 Conclusion and Related Work

We have demonstrated how type classes and existential types can be combined in any functional
language with a static, polymorphic type system, explicit type variables, and algebraic data type
declarations, regardless of strictness considerations. We have illustrated how first-class abstract
data types with user-defined interfaces overcome various drawbacks of existing functional and
object-oriented languages. Finally, we have shown how to translate our extended language into a
suitable target language.

Perry [19] first addresses Hindley-Milner type inference for existential types in the Hope+C
system. However, the typing rules given there are not sufficient to guarantee the absence of run-
time type errors, even though the Hope+C compiler seems to impose sufficient restrictions. The
following unsafe program, here given in Haskell syntax, is well-typed according to the typing

rules, but rejected by the compiler. (The type variable a is existentially quantified.)

data T = K a
f x = case x of K z -> z

f(K 1) == f(K true)

Läufer and Odersky [13] present an extension of ML with existentially quantified types; in
their language, operations on abstract types must be included explicitly in the existentially quan-
tified component types of recursive data types. This is avoided by using Haskell type classes as
interfaces of abstract types [12]; however, no formal semantics is given there.

Mitchell, Meldal, and Madhav [15] describe the possibility of treating modules as first-class
values but do not address the issue of type inference. By hiding the type components of a struc-
ture, the type of the structure itself is implicitly coerced from a strong (dependent) sum type to a
weak (existentially quantified) sum type.

Harper and Lillibridge [5] and independently Leroy [14] further explore this idea in a new
treatment of the Standard ML module system. In their approach, structures have weak sum types
and act as first-class values. Thus stratification of types into different universes of “small” types
and “large” strong sum types is no longer necessary. However, the module-based approaches are
semantically complex and lack support for type inference.

Pierce and Turner [20] describe an object-oriented language based on existential quantification
instead of recursive record types. Their language is based on an extension of to include sub-

typing and seems sufficiently powerful to model most features found in typical object-oriented
languages, including reference to the methods of the superclass and private instance variables,
which are not supported in Exell. However, their language is explicitly typed, and type inference
is not considered.

Chen, Hudak, and Odersky [4] present an extension of Haskell with parameterized type
classes. Jones [8] describes a more general extension of Haskell with type constructor classes. We
plan to extend Exell analogously to obtain container classes with abstract element types.

Acknowledgments

I would like to thank Martin Odersky for sharing his insights with me through numerous discus-
sions. This work has greatly benefited from conversations with Stefan Kaes, Tobias Nipkow, and
Phil Wadler. Lennart Augustsson’s extension of Haskell B. with existential quantification made it
possible to develop and test the examples contained in this paper. I would like to thank the anon-
ymous referees of FPCA ‘93 and JFP for their valuable feedback on an earlier version of this work
and for suggesting the interesting example involving the composition of a list of functions.

References

[1] L. Augustsson. Haskell B. user manual, May 1993. Distributed with the HBC compiler.

[2] G. Baumgartner and V. Russo. Signatures: A C++ extension for type abstraction and

Fω

Konstantin Läufer laufer@math.luc.edu Department of Mathematical Sciences Loyola University of Chicago 6525

Page 13 of 14

subtype polymorphism. Software: Practice & Experience, 1994. To appear.

[3] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
ACM Computing Surveys, 17(4):471–522, December 1985.

[4] K. Chen, P. Hudak, and M. Odersky. Parametric type classes. In Proc. ACM Conf. Lisp and
Functional Programming, 1992.

[5] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Proc. 21th ACM Symp. on Principles of Programming Languages, pages 123–137,
January 1994.

[6] P. Hudak, S. Peyton-Jones, P. Wadler, et al. Report on the programming language Haskell:
A non-strict, purely functional language, Version 1.2. ACM SIGPLAN Notices, 27(5), May
1992.

[7] M. Jones. Polymorphic recursion in Haskell, July 1993. Posted to the Haskell mailing list.

[8] M. Jones. A system of constructor classes: Overloading and implicit higher-order
polymorphism. In Proc. Functional Programming Languages and Computer Architecture. ACM,
June 1993.

[9] S. Kaes. Parametric overloading in polymorphic programming languages. In H. Ganzinger,
editor, Proc. 2nd European Symposium on Programming, Lecture Notes in Computer Science, Vol.
300, pages 131–144, Nancy, France, March 1988. Springer-Verlag.

[10] K. Läufer. Polymorphic Type Inference and Abstract Data Types. PhD thesis, New York
University, July 1992. Available as Technical Report 622, December 1992, from New York
University, Department of Computer Science.

[11] K. Läufer. Type classes with existential types. Preliminary Draft, June 1994.

[12] K. Läufer and M. Odersky. Type classes are signatures of abstract types. In Proc. Phoenix
Seminar and Workshop on Declarative Programming, November 1991.

[13] K. Läufer and M. Odersky. Polymorphic type inference and abstract data types. ACM
Transactions on Programming Languages and Systems (TOPLAS), 1994. To appear.

[14] X. Leroy. Manifest types, modules, and separate compilation. In Proc. 21th ACM Symp. on
Principles of Programming Languages, pages 109–123, January 1994.

[15] J. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML modules with
subtyping and inheritance. In Proc. 18th ACM Symp. on Principles of Programming Languages,
January 1991.

[16] J. Mitchell and G. Plotkin. Abstract types have existential type. ACM Trans. on Programming
Languages and Systems, 10(3):470–502, 1988.

[17] T. Nipkow and C. Prehofer. Type checking type classes. In Proc. 20th ACM Symp. Principles
of Programming Languages, 1993.

[18] T. Nipkow and G. Snelting. Type classes and overloading resolution via order-sorted
unification. In Proc. Functional Programming Languages and Computer Architecture, pages 1–
14. ACM, 1991.

[19] N. Perry. The Implementation of Practical Functional Programming Languages. PhD thesis,
Imperial College, 1990.

[20] B. Pierce and D. Turner. Simple type-theoretic foundations for object-oriented

Konstantin Läufer laufer@math.luc.edu Department of Mathematical Sciences Loyola University of Chicago 6525

Page 14 of 14

programming. Journal of Functional Programming, April 1993.

[21] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[22] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th ACM
Symp. on Principles of Programming Languages, pages 60–76, January 1989.

